Cargando…
Identifying mislabeled and contaminated DNA methylation microarray data: an extended quality control toolset with examples from GEO
BACKGROUND: Mislabeled, contaminated or poorly performing samples can threaten power in methylation microarray analyses or even result in spurious associations. We describe a set of quality checks for the popular Illumina 450K and EPIC microarrays to identify problematic samples and demonstrate thei...
Autores principales: | Heiss, Jonathan A., Just, Allan C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984806/ https://www.ncbi.nlm.nih.gov/pubmed/29881472 http://dx.doi.org/10.1186/s13148-018-0504-1 |
Ejemplares similares
-
Improved filtering of DNA methylation microarray data by detection p values and its impact on downstream analyses
por: Heiss, Jonathan A., et al.
Publicado: (2019) -
A statistical framework for detecting mislabeled and contaminated samples using shallow-depth sequence data
por: Chan, Ariel W., et al.
Publicado: (2018) -
Maternal blood contamination of collected cord blood can be identified using DNA methylation at three CpGs
por: Morin, Alexander M., et al.
Publicado: (2017) -
A new toolset for protein expression and subcellular localization studies in citrus and its application to citrus tristeza virus proteins
por: Levy, Amit, et al.
Publicado: (2018) -
An eUtils toolset and its use for creating a pipeline to link genomics and proteomics analyses to domain-specific biomedical literature
por: Nadkarni, Prakash M, et al.
Publicado: (2012)