Cargando…

Optocapacitive Generation of Action Potentials by Microsecond Laser Pulses of Nanojoule Energy

Millisecond pulses of laser light delivered to gold nanoparticles residing in close proximity to the surface membrane of neurons can induce membrane depolarization and initiate an action potential. An optocapacitance mechanism proposed as the basis of this effect posits that the membrane-interfaced...

Descripción completa

Detalles Bibliográficos
Autores principales: Carvalho-de-Souza, João L., Pinto, Bernardo I., Pepperberg, David R., Bezanilla, Francisco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Biophysical Society 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984948/
https://www.ncbi.nlm.nih.gov/pubmed/29273263
http://dx.doi.org/10.1016/j.bpj.2017.11.018
Descripción
Sumario:Millisecond pulses of laser light delivered to gold nanoparticles residing in close proximity to the surface membrane of neurons can induce membrane depolarization and initiate an action potential. An optocapacitance mechanism proposed as the basis of this effect posits that the membrane-interfaced particle photothermally induces a cell-depolarizing capacitive current, and predicts that delivering a given laser pulse energy within a shorter period should increase the pulse’s action-potential-generating effectiveness by increasing the magnitude of this capacitive current. Experiments on dorsal root ganglion cells show that, for each of a group of interfaced gold nanoparticles and microscale carbon particles, reducing pulse duration from milliseconds to microseconds markedly decreases the minimal pulse energy required for AP generation, providing strong support for the optocapacitance mechanism hypothesis.