Cargando…
Pandemic Avian Influenza and Intra/Interhaemagglutinin Subtype Electrostatic Variation among Viruses Isolated from Avian, Mammalian, and Human Hosts
Host jump can result in deadly pandemic events when avian influenza A viruses broaden their host specificity and become able to infect mammals, including humans. Haemagglutinin—the major capsid protein in influenza A viruses—is subjected to high rate mutations, of which several occur at its “head”:...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985083/ https://www.ncbi.nlm.nih.gov/pubmed/29888260 http://dx.doi.org/10.1155/2018/3870508 |
_version_ | 1783328701443735552 |
---|---|
author | Righetto, Irene Filippini, Francesco |
author_facet | Righetto, Irene Filippini, Francesco |
author_sort | Righetto, Irene |
collection | PubMed |
description | Host jump can result in deadly pandemic events when avian influenza A viruses broaden their host specificity and become able to infect mammals, including humans. Haemagglutinin—the major capsid protein in influenza A viruses—is subjected to high rate mutations, of which several occur at its “head”: the receptor-binding domain that mediates specific binding to host cell receptors. Such surface-changing mutations may lead to antigenically novel influenza A viruses hence in pandemics by host jump and in vaccine escape by antigenic drift. Changes in haemagglutinin surface electrostatics have been recently associated with antigenic drift and with clades evolution and spreading in H5N1 and H9N2 viruses. We performed a comparative analysis of haemagglutinin surface electrostatics to investigate clustering and eventual fingerprints among representative pandemic (H5 and H7) and nonpandemic (H4 and H6) avian influenza viral subtypes. We observed preferential sorting of viruses isolated from mammalian/human hosts among these electrostatic clusters of a subtype; however, sorting was not “100% specific” to the different clusters. Therefore, electrostatic fingerprints can help in understanding, but they cannot explain alone the host jumping mechanism. |
format | Online Article Text |
id | pubmed-5985083 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-59850832018-06-10 Pandemic Avian Influenza and Intra/Interhaemagglutinin Subtype Electrostatic Variation among Viruses Isolated from Avian, Mammalian, and Human Hosts Righetto, Irene Filippini, Francesco Biomed Res Int Research Article Host jump can result in deadly pandemic events when avian influenza A viruses broaden their host specificity and become able to infect mammals, including humans. Haemagglutinin—the major capsid protein in influenza A viruses—is subjected to high rate mutations, of which several occur at its “head”: the receptor-binding domain that mediates specific binding to host cell receptors. Such surface-changing mutations may lead to antigenically novel influenza A viruses hence in pandemics by host jump and in vaccine escape by antigenic drift. Changes in haemagglutinin surface electrostatics have been recently associated with antigenic drift and with clades evolution and spreading in H5N1 and H9N2 viruses. We performed a comparative analysis of haemagglutinin surface electrostatics to investigate clustering and eventual fingerprints among representative pandemic (H5 and H7) and nonpandemic (H4 and H6) avian influenza viral subtypes. We observed preferential sorting of viruses isolated from mammalian/human hosts among these electrostatic clusters of a subtype; however, sorting was not “100% specific” to the different clusters. Therefore, electrostatic fingerprints can help in understanding, but they cannot explain alone the host jumping mechanism. Hindawi 2018-05-17 /pmc/articles/PMC5985083/ /pubmed/29888260 http://dx.doi.org/10.1155/2018/3870508 Text en Copyright © 2018 Irene Righetto and Francesco Filippini. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Righetto, Irene Filippini, Francesco Pandemic Avian Influenza and Intra/Interhaemagglutinin Subtype Electrostatic Variation among Viruses Isolated from Avian, Mammalian, and Human Hosts |
title | Pandemic Avian Influenza and Intra/Interhaemagglutinin Subtype Electrostatic Variation among Viruses Isolated from Avian, Mammalian, and Human Hosts |
title_full | Pandemic Avian Influenza and Intra/Interhaemagglutinin Subtype Electrostatic Variation among Viruses Isolated from Avian, Mammalian, and Human Hosts |
title_fullStr | Pandemic Avian Influenza and Intra/Interhaemagglutinin Subtype Electrostatic Variation among Viruses Isolated from Avian, Mammalian, and Human Hosts |
title_full_unstemmed | Pandemic Avian Influenza and Intra/Interhaemagglutinin Subtype Electrostatic Variation among Viruses Isolated from Avian, Mammalian, and Human Hosts |
title_short | Pandemic Avian Influenza and Intra/Interhaemagglutinin Subtype Electrostatic Variation among Viruses Isolated from Avian, Mammalian, and Human Hosts |
title_sort | pandemic avian influenza and intra/interhaemagglutinin subtype electrostatic variation among viruses isolated from avian, mammalian, and human hosts |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985083/ https://www.ncbi.nlm.nih.gov/pubmed/29888260 http://dx.doi.org/10.1155/2018/3870508 |
work_keys_str_mv | AT righettoirene pandemicavianinfluenzaandintrainterhaemagglutininsubtypeelectrostaticvariationamongvirusesisolatedfromavianmammalianandhumanhosts AT filippinifrancesco pandemicavianinfluenzaandintrainterhaemagglutininsubtypeelectrostaticvariationamongvirusesisolatedfromavianmammalianandhumanhosts |