Cargando…
Analysis of Bone Mineral Density/Content of Paratroopers and Hoopsters
The different mechanical stimulus affects the bone mass and bone strength. The aim of this study was to investigate the effect of landing posture of the hoopster and paratrooper on the bone mass. In this study, 39 male participants were recruited including 13 paratroopers, 13 hoopsters, and 13 commo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985112/ https://www.ncbi.nlm.nih.gov/pubmed/29887982 http://dx.doi.org/10.1155/2018/6030624 |
Sumario: | The different mechanical stimulus affects the bone mass and bone strength. The aim of this study was to investigate the effect of landing posture of the hoopster and paratrooper on the bone mass. In this study, 39 male participants were recruited including 13 paratroopers, 13 hoopsters, and 13 common students (control groups). Bone area (BA), BMD and BMC of calcaneus, and 1–5th of the metatarsus, hip, and lumbar spine (L(1)–L(4)) were measured by the dual-energy X-ray absorptiometry. Also, the vertical ground reaction forces (GRFs) of hoopsters and paratroopers were measured by the landing of 1.2 m 3D force platform. BA of hoopsters at the calcaneus, lumbar spine, and hip were significantly higher than the control group. The lumbar spine, hip, calcaneus, the 1st and 2nd metatarsals, BMC of paratroopers, and control groups were significantly lower than hoopsters. BMD of the lumbar spine, hip, and right and left femoral necks in hoopsters were significantly higher than the other participants. BMC and BMD of lower limber showed no significant difference between paratroopers and the control group. Besides, peak GRFs of paratroopers (11.06 times of BW) were significantly higher than hoopsters (6.49 times of BW). The higher GRF in the landing train is not always in accordance with higher BMD and BMC. Variable loads in hoopsters can improve bone remodeling and play an important role in bone expansions for trabecular bones. This will be considered by the method of training to prevent bone loss. |
---|