Cargando…
Dynamic longitudinal discriminant analysis using multiple longitudinal markers of different types
There is an emerging need in clinical research to accurately predict patients’ disease status and disease progression by optimally integrating multivariate clinical information. Clinical data are often collected over time for multiple biomarkers of different types (e.g. continuous, binary and counts...
Autores principales: | Hughes, David M, Komárek, Arnošt, Czanner, Gabriela, Garcia-Fiñana, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985589/ https://www.ncbi.nlm.nih.gov/pubmed/27789653 http://dx.doi.org/10.1177/0962280216674496 |
Ejemplares similares
-
Dynamic classification using credible intervals in longitudinal discriminant analysis
por: Hughes, David M., et al.
Publicado: (2017) -
Identification of patients who will not achieve seizure remission within 5 years on AEDs
por: Hughes, David M., et al.
Publicado: (2018) -
A comparison of group prediction approaches in longitudinal discriminant analysis
por: Hughes, David M., et al.
Publicado: (2017) -
Fast approximate inference for multivariate longitudinal data
por: Hughes, David M, et al.
Publicado: (2021) -
Longitudinal cortical markers of persistence and remission of pediatric PTSD
por: Heyn, Sara A., et al.
Publicado: (2019)