Cargando…

protaTETHER – a method for the incorporation of variable linkers in protein fusions reveals impacts of linker flexibility in a PKAc‐GFP fusion protein

Protein fusions are of fundamental importance in the study of cellular biology and the elucidation of cell signaling pathways, and the importance of linkers for the proper function of protein fusions is well documented in the literature. However, there are few convenient methods available to experim...

Descripción completa

Detalles Bibliográficos
Autores principales: Norris, Jessica L., Hughes, Robert M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986021/
https://www.ncbi.nlm.nih.gov/pubmed/29928581
http://dx.doi.org/10.1002/2211-5463.12414
_version_ 1783328859889860608
author Norris, Jessica L.
Hughes, Robert M.
author_facet Norris, Jessica L.
Hughes, Robert M.
author_sort Norris, Jessica L.
collection PubMed
description Protein fusions are of fundamental importance in the study of cellular biology and the elucidation of cell signaling pathways, and the importance of linkers for the proper function of protein fusions is well documented in the literature. However, there are few convenient methods available to experimentalists for the systematic implementation of linkers in protein fusions. In this work, we describe a universal approach to the creation and insertion of focused linker libraries into protein fusions. This process, deemed protaTETHER, utilizes reiterative oligomer design, PCR‐mediated linker library generation, and restriction enzyme‐free cloning methods in a straightforward, three‐step cloning process. We utilize a fusion between the catalytic subunit of cAMP‐dependent protein kinase A (PKAc) and green fluorescent protein (GFP) for the development of the protaTETHER method, implementing small linker libraries that vary by length, sequence, and predicted secondary structural elements. We analyze the impact of linker length and sequence on the expression, activity, and subcellular localization of the PKAc‐GFP fusions, and use these results to select a PKAc‐GFP fusion construct with robust expression and enzymatic activity. Based upon the results of both biochemical experiments and molecular modeling, we determine that linker flexibility is more important than linker length for optimal kinase activity and expression.
format Online
Article
Text
id pubmed-5986021
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-59860212018-06-20 protaTETHER – a method for the incorporation of variable linkers in protein fusions reveals impacts of linker flexibility in a PKAc‐GFP fusion protein Norris, Jessica L. Hughes, Robert M. FEBS Open Bio Methods Protein fusions are of fundamental importance in the study of cellular biology and the elucidation of cell signaling pathways, and the importance of linkers for the proper function of protein fusions is well documented in the literature. However, there are few convenient methods available to experimentalists for the systematic implementation of linkers in protein fusions. In this work, we describe a universal approach to the creation and insertion of focused linker libraries into protein fusions. This process, deemed protaTETHER, utilizes reiterative oligomer design, PCR‐mediated linker library generation, and restriction enzyme‐free cloning methods in a straightforward, three‐step cloning process. We utilize a fusion between the catalytic subunit of cAMP‐dependent protein kinase A (PKAc) and green fluorescent protein (GFP) for the development of the protaTETHER method, implementing small linker libraries that vary by length, sequence, and predicted secondary structural elements. We analyze the impact of linker length and sequence on the expression, activity, and subcellular localization of the PKAc‐GFP fusions, and use these results to select a PKAc‐GFP fusion construct with robust expression and enzymatic activity. Based upon the results of both biochemical experiments and molecular modeling, we determine that linker flexibility is more important than linker length for optimal kinase activity and expression. John Wiley and Sons Inc. 2018-04-25 /pmc/articles/PMC5986021/ /pubmed/29928581 http://dx.doi.org/10.1002/2211-5463.12414 Text en © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methods
Norris, Jessica L.
Hughes, Robert M.
protaTETHER – a method for the incorporation of variable linkers in protein fusions reveals impacts of linker flexibility in a PKAc‐GFP fusion protein
title protaTETHER – a method for the incorporation of variable linkers in protein fusions reveals impacts of linker flexibility in a PKAc‐GFP fusion protein
title_full protaTETHER – a method for the incorporation of variable linkers in protein fusions reveals impacts of linker flexibility in a PKAc‐GFP fusion protein
title_fullStr protaTETHER – a method for the incorporation of variable linkers in protein fusions reveals impacts of linker flexibility in a PKAc‐GFP fusion protein
title_full_unstemmed protaTETHER – a method for the incorporation of variable linkers in protein fusions reveals impacts of linker flexibility in a PKAc‐GFP fusion protein
title_short protaTETHER – a method for the incorporation of variable linkers in protein fusions reveals impacts of linker flexibility in a PKAc‐GFP fusion protein
title_sort protatether – a method for the incorporation of variable linkers in protein fusions reveals impacts of linker flexibility in a pkac‐gfp fusion protein
topic Methods
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986021/
https://www.ncbi.nlm.nih.gov/pubmed/29928581
http://dx.doi.org/10.1002/2211-5463.12414
work_keys_str_mv AT norrisjessical protatetheramethodfortheincorporationofvariablelinkersinproteinfusionsrevealsimpactsoflinkerflexibilityinapkacgfpfusionprotein
AT hughesrobertm protatetheramethodfortheincorporationofvariablelinkersinproteinfusionsrevealsimpactsoflinkerflexibilityinapkacgfpfusionprotein