Cargando…
An information theoretic framework reveals a tunable allosteric network in group II chaperonins
The ATP-dependent allosteric regulation of the ring-shaped Group II chaperonins remains ill-defined. Their complex oligomeric topology limited the success of structural techniques in suggesting allosteric determinants. Further, their high sequence conservation has hindered prediction of allosteric n...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986071/ https://www.ncbi.nlm.nih.gov/pubmed/28741612 http://dx.doi.org/10.1038/nsmb.3440 |
_version_ | 1783328870507741184 |
---|---|
author | Lopez, Tom Dalton, Kevin Tomlinson, Anthony Pande, Vijay Frydman, Judith |
author_facet | Lopez, Tom Dalton, Kevin Tomlinson, Anthony Pande, Vijay Frydman, Judith |
author_sort | Lopez, Tom |
collection | PubMed |
description | The ATP-dependent allosteric regulation of the ring-shaped Group II chaperonins remains ill-defined. Their complex oligomeric topology limited the success of structural techniques in suggesting allosteric determinants. Further, their high sequence conservation has hindered prediction of allosteric networks using mathematical covariation approaches, as they cannot be applied to conserved proteins. Here, we develop an information theoretic strategy robust to residue conservation and apply it to group II chaperonins. We identify a contiguous network of covarying residues that connects all nucleotide binding pockets within each chaperonin ring. An interfacial residue between the networks of neighboring subunits controls positive cooperativity by communicating nucleotide occupancy within each ring. Strikingly, chaperonin allostery is tunable through single mutations at this position. Naturally occurring variants that double the extent of positive cooperativity are less prevalent in nature. We propose that being less cooperative that attainable allows the chaperonins to support robust folding over a wider range of metabolic conditions. |
format | Online Article Text |
id | pubmed-5986071 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
record_format | MEDLINE/PubMed |
spelling | pubmed-59860712018-06-04 An information theoretic framework reveals a tunable allosteric network in group II chaperonins Lopez, Tom Dalton, Kevin Tomlinson, Anthony Pande, Vijay Frydman, Judith Nat Struct Mol Biol Article The ATP-dependent allosteric regulation of the ring-shaped Group II chaperonins remains ill-defined. Their complex oligomeric topology limited the success of structural techniques in suggesting allosteric determinants. Further, their high sequence conservation has hindered prediction of allosteric networks using mathematical covariation approaches, as they cannot be applied to conserved proteins. Here, we develop an information theoretic strategy robust to residue conservation and apply it to group II chaperonins. We identify a contiguous network of covarying residues that connects all nucleotide binding pockets within each chaperonin ring. An interfacial residue between the networks of neighboring subunits controls positive cooperativity by communicating nucleotide occupancy within each ring. Strikingly, chaperonin allostery is tunable through single mutations at this position. Naturally occurring variants that double the extent of positive cooperativity are less prevalent in nature. We propose that being less cooperative that attainable allows the chaperonins to support robust folding over a wider range of metabolic conditions. 2017-07-24 2017-09 /pmc/articles/PMC5986071/ /pubmed/28741612 http://dx.doi.org/10.1038/nsmb.3440 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Lopez, Tom Dalton, Kevin Tomlinson, Anthony Pande, Vijay Frydman, Judith An information theoretic framework reveals a tunable allosteric network in group II chaperonins |
title | An information theoretic framework reveals a tunable allosteric network in group II chaperonins |
title_full | An information theoretic framework reveals a tunable allosteric network in group II chaperonins |
title_fullStr | An information theoretic framework reveals a tunable allosteric network in group II chaperonins |
title_full_unstemmed | An information theoretic framework reveals a tunable allosteric network in group II chaperonins |
title_short | An information theoretic framework reveals a tunable allosteric network in group II chaperonins |
title_sort | information theoretic framework reveals a tunable allosteric network in group ii chaperonins |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986071/ https://www.ncbi.nlm.nih.gov/pubmed/28741612 http://dx.doi.org/10.1038/nsmb.3440 |
work_keys_str_mv | AT lopeztom aninformationtheoreticframeworkrevealsatunableallostericnetworkingroupiichaperonins AT daltonkevin aninformationtheoreticframeworkrevealsatunableallostericnetworkingroupiichaperonins AT tomlinsonanthony aninformationtheoreticframeworkrevealsatunableallostericnetworkingroupiichaperonins AT pandevijay aninformationtheoreticframeworkrevealsatunableallostericnetworkingroupiichaperonins AT frydmanjudith aninformationtheoreticframeworkrevealsatunableallostericnetworkingroupiichaperonins AT lopeztom informationtheoreticframeworkrevealsatunableallostericnetworkingroupiichaperonins AT daltonkevin informationtheoreticframeworkrevealsatunableallostericnetworkingroupiichaperonins AT tomlinsonanthony informationtheoreticframeworkrevealsatunableallostericnetworkingroupiichaperonins AT pandevijay informationtheoreticframeworkrevealsatunableallostericnetworkingroupiichaperonins AT frydmanjudith informationtheoreticframeworkrevealsatunableallostericnetworkingroupiichaperonins |