Cargando…

Xenon-inhibition of the MscL mechano-sensitive channel and the CopB copper ATPase under different conditions suggests direct effects on these proteins

Xenon is frequently used as a general anesthetic in humans, but the mechanism remains an issue of debate. While for some membrane proteins, a direct interaction of xenon with the protein has been shown to be the inhibitory mechanism, other membrane protein functions could be affected by changes of m...

Descripción completa

Detalles Bibliográficos
Autores principales: Petrov, Evgeny, Menon, Gopalakrishnan, Rohde, Paul R., Battle, Andrew R., Martinac, Boris, Solioz, Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986136/
https://www.ncbi.nlm.nih.gov/pubmed/29864148
http://dx.doi.org/10.1371/journal.pone.0198110
Descripción
Sumario:Xenon is frequently used as a general anesthetic in humans, but the mechanism remains an issue of debate. While for some membrane proteins, a direct interaction of xenon with the protein has been shown to be the inhibitory mechanism, other membrane protein functions could be affected by changes of membrane properties due to partitioning of the gas into the lipid bilayer. Here, the effect of xenon on a mechanosensitive ion channel and a copper ion-translocating ATPase was compared under different conditions. Xenon inhibited spontaneous gating of the Escherichia coli mechano-sensitive mutant channel MscL-G22E, as shown by patch-clamp recording techniques. Under high hydrostatic pressure, MscL-inhibition was reversed. Similarly, the activity of the Enterococcus hirae CopB copper ATPase, reconstituted into proteoliposomes, was inhibited by xenon. However, the CopB ATPase activity was also inhibited by xenon when CopB was in a solubilized state. These findings suggest that xenon acts by directly interacting with these proteins, rather than via indirect effects by altering membrane properties. Also, inhibition of copper transport may be a novel effect of xenon that contributes to anesthesia.