Cargando…

DOCK9 induces membrane ruffles and Rac1 activity in cancer HeLa epithelial cells

Dedicator-of-cytokinesis (DOCK) proteins are a family of guanine-nucleotide exchange factors (GEF) for Rho GTPases. The DOCK-D homology subfamily comprises DOCK9, DOCK10, and DOCK11. DOCK9 and DOCK11 are GEFs for Cdc42 and induce filopodia, while DOCK10 is a dual GEF for Cdc42 and Rac1 and induces f...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruiz-Lafuente, Natalia, Minguela, Alfredo, Parrado, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986721/
https://www.ncbi.nlm.nih.gov/pubmed/29872750
http://dx.doi.org/10.1016/j.bbrep.2018.05.004
Descripción
Sumario:Dedicator-of-cytokinesis (DOCK) proteins are a family of guanine-nucleotide exchange factors (GEF) for Rho GTPases. The DOCK-D homology subfamily comprises DOCK9, DOCK10, and DOCK11. DOCK9 and DOCK11 are GEFs for Cdc42 and induce filopodia, while DOCK10 is a dual GEF for Cdc42 and Rac1 and induces filopodia and ruffles. We provide data showing that DOCK9, the only one of the DOCK-D members that is not considered hematopoietic, is nevertheless expressed at high levels in T lymphocytes, as do DOCK10 and DOCK11, although unlike these, it is not expressed in B lymphocytes. To investigate DOCK9 function, we have created a stable HeLa clone with inducible expression of HA-DOCK9. Induction of expression of HA-DOCK9 produced loss of elongation and polygonal shape of HeLa cells. Regarding membrane protrusions, HA-DOCK9 prominently induced filopodia, but also an increase of membrane ruffles. The latter was consistent with an increase in the levels of activation of Rac1, suggesting that DOCK9 carries a secondary ability to induce ruffles through activation of Rac1.