Cargando…
Current achievements and future directions in genetic engineering of European plum (Prunus domestica L.)
In most woody fruit species, transformation and regeneration are difficult. However, European plum (Prunus domestica) has been shown to be amenable to genetic improvement technologies from classical hybridization, to genetic engineering, to rapid cycle crop breeding (‘FasTrack’ breeding). Since the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986827/ https://www.ncbi.nlm.nih.gov/pubmed/29651659 http://dx.doi.org/10.1007/s11248-018-0072-3 |
Sumario: | In most woody fruit species, transformation and regeneration are difficult. However, European plum (Prunus domestica) has been shown to be amenable to genetic improvement technologies from classical hybridization, to genetic engineering, to rapid cycle crop breeding (‘FasTrack’ breeding). Since the first report on European plum transformation with marker genes in the early 90 s, numerous manuscripts have been published reporting the generation of new clones with agronomically interesting traits, such as pests, diseases and/or abiotic stress resistance, shorter juvenile period, dwarfing, continuous flowering, etc. This review focuses on the main advances in genetic transformation of European plum achieved to date, and the lines of work that are converting genetic engineering into a contemporary breeding tool for this species. |
---|