Cargando…
Machine Learning Classification to Identify the Stage of Brain-Computer Interface Therapy for Stroke Rehabilitation Using Functional Connectivity
Interventional therapy using brain-computer interface (BCI) technology has shown promise in facilitating motor recovery in stroke survivors; however, the impact of this form of intervention on functional networks outside of the motor network specifically is not well-understood. Here, we investigated...
Autores principales: | Mohanty, Rosaleena, Sinha, Anita M., Remsik, Alexander B., Dodd, Keith C., Young, Brittany M., Jacobson, Tyler, McMillan, Matthew, Thoma, Jaclyn, Advani, Hemali, Nair, Veena A., Kang, Theresa J., Caldera, Kristin, Edwards, Dorothy F., Williams, Justin C., Prabhakaran, Vivek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986965/ https://www.ncbi.nlm.nih.gov/pubmed/29896082 http://dx.doi.org/10.3389/fnins.2018.00353 |
Ejemplares similares
-
Early Findings on Functional Connectivity Correlates of Behavioral Outcomes of Brain-Computer Interface Stroke Rehabilitation Using Machine Learning
por: Mohanty, Rosaleena, et al.
Publicado: (2018) -
Behavioral Outcomes Following Brain–Computer Interface Intervention for Upper Extremity Rehabilitation in Stroke: A Randomized Controlled Trial
por: Remsik, Alexander B., et al.
Publicado: (2018) -
Ipsilesional Mu Rhythm Desynchronization and Changes in Motor Behavior Following Post Stroke BCI Intervention for Motor Rehabilitation
por: Remsik, Alexander B., et al.
Publicado: (2019) -
Dose-response relationships using brain–computer interface technology impact stroke rehabilitation
por: Young, Brittany M., et al.
Publicado: (2015) -
Brain–Computer Interface Training after Stroke Affects Patterns of Brain–Behavior Relationships in Corticospinal Motor Fibers
por: Young, Brittany M., et al.
Publicado: (2016)