Cargando…
Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides
INTRODUCTION: As the development of new antimicrobial agents faces a historical decline, the issue of bacterial drug resistance has become a serious dilemma that threatens the human population worldwide. Antimicrobial peptides (AMPs) represent an attractive and a promising class of antimicrobial age...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987794/ https://www.ncbi.nlm.nih.gov/pubmed/29910626 http://dx.doi.org/10.2147/IDR.S166236 |
_version_ | 1783329186263334912 |
---|---|
author | Almaaytah, Ammar Qaoud, Mohammed T Abualhaijaa, Ahmad Al-Balas, Qosay Alzoubi, Karem H |
author_facet | Almaaytah, Ammar Qaoud, Mohammed T Abualhaijaa, Ahmad Al-Balas, Qosay Alzoubi, Karem H |
author_sort | Almaaytah, Ammar |
collection | PubMed |
description | INTRODUCTION: As the development of new antimicrobial agents faces a historical decline, the issue of bacterial drug resistance has become a serious dilemma that threatens the human population worldwide. Antimicrobial peptides (AMPs) represent an attractive and a promising class of antimicrobial agents. AIM: The hybridization of AMPs aimed at merging two individual active fragments of native peptides to generate a new AMP with altered physicochemical properties that translate into an enhanced safety profile. MATERIALS AND METHODS: In this study, we have rationally designed a new hybrid peptide via combining two individual α-helical fragments of both BMAP-27 and OP-145. The resultant peptide, was evaluated for its antimicrobial and antibiofilm activity against a range of microbial strains. The resultant peptide was also evaluated for its toxicity against mammalian cells using hemolytic and anti proliferative assays. RESULTS: The antimicrobial activity of H4 revealed that the peptide is displaying a broad spectrum of activity against both Gram-positive and Gram-negative bacteria including standard and multidrug-resistant bacterial strains in the range of 2.5–25 μM. The new hybrid peptide displayed potent activity in eradicating biofilm-forming cells, and the reported minimum biofilm eradication concentrations were equal to the minimum inhibitory concentration values reported for planktonic cells. Additionally, H4 exhibited reduced toxicity profiles against eukaryotic cells. Combining H4 peptide with conventional antibiotics has led to a dramatic enhancement of the antimicrobial activity of both agents with synergistic or additive outcomes. CONCLUSION: Overall, this study indicates the success of both the hybridization and synergism strategy in developing AMPs as potential antimicrobial therapeutics with reduced toxicity profiles that could be efficiently employed to eradicate resistant bacterial strains and enhance the selectivity and toxicity profiles of native AMPs. |
format | Online Article Text |
id | pubmed-5987794 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-59877942018-06-15 Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides Almaaytah, Ammar Qaoud, Mohammed T Abualhaijaa, Ahmad Al-Balas, Qosay Alzoubi, Karem H Infect Drug Resist Original Research INTRODUCTION: As the development of new antimicrobial agents faces a historical decline, the issue of bacterial drug resistance has become a serious dilemma that threatens the human population worldwide. Antimicrobial peptides (AMPs) represent an attractive and a promising class of antimicrobial agents. AIM: The hybridization of AMPs aimed at merging two individual active fragments of native peptides to generate a new AMP with altered physicochemical properties that translate into an enhanced safety profile. MATERIALS AND METHODS: In this study, we have rationally designed a new hybrid peptide via combining two individual α-helical fragments of both BMAP-27 and OP-145. The resultant peptide, was evaluated for its antimicrobial and antibiofilm activity against a range of microbial strains. The resultant peptide was also evaluated for its toxicity against mammalian cells using hemolytic and anti proliferative assays. RESULTS: The antimicrobial activity of H4 revealed that the peptide is displaying a broad spectrum of activity against both Gram-positive and Gram-negative bacteria including standard and multidrug-resistant bacterial strains in the range of 2.5–25 μM. The new hybrid peptide displayed potent activity in eradicating biofilm-forming cells, and the reported minimum biofilm eradication concentrations were equal to the minimum inhibitory concentration values reported for planktonic cells. Additionally, H4 exhibited reduced toxicity profiles against eukaryotic cells. Combining H4 peptide with conventional antibiotics has led to a dramatic enhancement of the antimicrobial activity of both agents with synergistic or additive outcomes. CONCLUSION: Overall, this study indicates the success of both the hybridization and synergism strategy in developing AMPs as potential antimicrobial therapeutics with reduced toxicity profiles that could be efficiently employed to eradicate resistant bacterial strains and enhance the selectivity and toxicity profiles of native AMPs. Dove Medical Press 2018-06-01 /pmc/articles/PMC5987794/ /pubmed/29910626 http://dx.doi.org/10.2147/IDR.S166236 Text en © 2018 Almaaytah et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Almaaytah, Ammar Qaoud, Mohammed T Abualhaijaa, Ahmad Al-Balas, Qosay Alzoubi, Karem H Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides |
title | Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides |
title_full | Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides |
title_fullStr | Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides |
title_full_unstemmed | Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides |
title_short | Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides |
title_sort | hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987794/ https://www.ncbi.nlm.nih.gov/pubmed/29910626 http://dx.doi.org/10.2147/IDR.S166236 |
work_keys_str_mv | AT almaaytahammar hybridizationandantibioticsynergismasatoolforreducingthecytotoxicityofantimicrobialpeptides AT qaoudmohammedt hybridizationandantibioticsynergismasatoolforreducingthecytotoxicityofantimicrobialpeptides AT abualhaijaaahmad hybridizationandantibioticsynergismasatoolforreducingthecytotoxicityofantimicrobialpeptides AT albalasqosay hybridizationandantibioticsynergismasatoolforreducingthecytotoxicityofantimicrobialpeptides AT alzoubikaremh hybridizationandantibioticsynergismasatoolforreducingthecytotoxicityofantimicrobialpeptides |