Cargando…
Early prediction of cognitive deficits in very preterm infants using functional connectome data in an artificial neural network framework
Investigation of the brain's functional connectome can improve our understanding of how an individual brain's organizational changes influence cognitive function and could result in improved individual risk stratification. Brain connectome studies in adults and older children have shown th...
Autores principales: | He, Lili, Li, Hailong, Holland, Scott K., Yuan, Weihong, Altaye, Mekibib, Parikh, Nehal A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987842/ https://www.ncbi.nlm.nih.gov/pubmed/29876249 http://dx.doi.org/10.1016/j.nicl.2018.01.032 |
Ejemplares similares
-
Early Prediction of Cognitive Deficit in Very Preterm Infants Using Brain Structural Connectome With Transfer Learning Enhanced Deep Convolutional Neural Networks
por: Chen, Ming, et al.
Publicado: (2020) -
Deep Multimodal Learning From MRI and Clinical Data for Early Prediction of Neurodevelopmental Deficits in Very Preterm Infants
por: He, Lili, et al.
Publicado: (2021) -
Association between brain structural network efficiency at term-equivalent age and early development of cerebral palsy in very preterm infants
por: Kline, Julia E., et al.
Publicado: (2021) -
Retinopathy of Prematurity and Bronchopulmonary Dysplasia are Independent Antecedents of Cortical Maturational Abnormalities in Very Preterm Infants
por: Kline, Julia E., et al.
Publicado: (2019) -
Diffuse white matter abnormality in very preterm infants at term
reflects reduced brain network efficiency
por: Kline, Julia E., et al.
Publicado: (2021)