Cargando…

A biomimetic nanoparticle-enabled toxoid vaccine against melittin

BACKGROUND: Melittin, the main active peptide ingredient of bee venom, can cause severe cell membrane lysis due to its robust interaction with negatively charged phospholipids. So far, no effective anti-melittin vaccine has been developed to protect people from undesired melittin intoxication. METHO...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Tianyi, Li, Chenyang, Du, Ting, Wu, Yujiao, Yang, Yuping, Liu, Xuan, Zhang, Qianqian, Xu, Xiaoping, Gou, Maling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987856/
https://www.ncbi.nlm.nih.gov/pubmed/29910613
http://dx.doi.org/10.2147/IJN.S156346
Descripción
Sumario:BACKGROUND: Melittin, the main active peptide ingredient of bee venom, can cause severe cell membrane lysis due to its robust interaction with negatively charged phospholipids. So far, no effective anti-melittin vaccine has been developed to protect people from undesired melittin intoxication. METHODS: Herein, we prepared a polydiacetylene (PDA) nanoparticle with cell membrane-mimic surface to complex melittin, forming an anti-melittin vaccine (PDA–melittin). RESULTS: PDA nanoparticles could effectively combine with melittin and neutralize its toxicity. PDA–melittin nanocomplex is demonstrated to enhance melittin uptake by DCs and stimulate strong melittin-specific immunity. Mice immunized with PDA–melittin nanocomplex showed higher survival rate after exposion to melittin than untreated mice. CONCLUSION: The PDA–melittin nanocomplex can efficiently and safely generate a specific immunity against melittin to protect body from melittin intoxication, providing a new method with potential clinical application for the treatment of melittin intoxication.