Cargando…

Coordination of robust single cell rhythms in the Arabidopsis circadian clock via spatial waves of gene expression

The Arabidopsis circadian clock orchestrates gene regulation across the day/night cycle. Although a multiple feedback loop circuit has been shown to generate the 24-hr rhythm, it remains unclear how robust the clock is in individual cells, or how clock timing is coordinated across the plant. Here we...

Descripción completa

Detalles Bibliográficos
Autores principales: Gould, Peter D, Domijan, Mirela, Greenwood, Mark, Tokuda, Isao T, Rees, Hannah, Kozma-Bognar, Laszlo, Hall, Anthony JW, Locke, James CW
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988422/
https://www.ncbi.nlm.nih.gov/pubmed/29697372
http://dx.doi.org/10.7554/eLife.31700
Descripción
Sumario:The Arabidopsis circadian clock orchestrates gene regulation across the day/night cycle. Although a multiple feedback loop circuit has been shown to generate the 24-hr rhythm, it remains unclear how robust the clock is in individual cells, or how clock timing is coordinated across the plant. Here we examine clock activity at the single cell level across Arabidopsis seedlings over several days under constant environmental conditions. Our data reveal robust single cell oscillations, albeit desynchronised. In particular, we observe two waves of clock activity; one going down, and one up the root. We also find evidence of cell-to-cell coupling of the clock, especially in the root tip. A simple model shows that cell-to-cell coupling and our measured period differences between cells can generate the observed waves. Our results reveal the spatial structure of the plant clock and suggest that unlike the centralised mammalian clock, the Arabidopsis clock has multiple coordination points.