Cargando…

The linkage between β1 integrin and the actin cytoskeleton is differentially regulated by tyrosine and serine/threonine phosphorylation of β1 integrin in normal and cancerous human breast cells

BACKGROUND: Structural requirements for the β1 integrin functions in cell adhesion, spreading and signaling have been well documented mainly for fibroblasts. In this study, we examined the reason for the reduced surface expression of β1 integrin in human breast cancer MCF-7 cells compared to normal...

Descripción completa

Detalles Bibliográficos
Autor principal: Takahashi, Kazuhide
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC59887/
https://www.ncbi.nlm.nih.gov/pubmed/11716783
http://dx.doi.org/10.1186/1471-2121-2-23
_version_ 1782120107937366016
author Takahashi, Kazuhide
author_facet Takahashi, Kazuhide
author_sort Takahashi, Kazuhide
collection PubMed
description BACKGROUND: Structural requirements for the β1 integrin functions in cell adhesion, spreading and signaling have been well documented mainly for fibroblasts. In this study, we examined the reason for the reduced surface expression of β1 integrin in human breast cancer MCF-7 cells compared to normal human breast epithelial (HBE) cells, both of which adhered to collagen type IV. RESULTS: The β1 integrin immunoprecipitates from either HBE or MCF-7 cells involved α-actinin while actin coprecipitated with β1 integrin from HBE cells but not from MCF-7 cells. Immunoblotting using the anti-phosphotyrosine (PY) antibody indicated the phosphorylation of β1 integrin at least at tyrosine in both cells. Dephosphorylation of β1 integrin from HBE cells by protein tyrosine phosphatase (PTP), but not by protein serine/threonine phosphatase (PP), caused dissociation of actin from β1 integrin, although dephosphorylation of it from MCF-7 cells by either PTP or PP caused association of the two proteins. In MCF-7 cells β1 integrin coprecipitated doublet of proteins having the Ca(2+)/calmodulin-dependent protein kinase (CaMK) II activity that was susceptible to KN-62, a specific inhibitor of CaMKII. CONCLUSION: The results suggest that β1 integrin is tyrosine phosphorylated and links with actin via α-actinin in HBE cells but prevented from linking with actin in MCF-7 cells by phosphorylation at both tyrosine and serine/threonine of β1 integrin which forms a complex with α-actinin and CaMKII. Thus the linkage formation of β1 integrin with actin may be differentially regulated by its tyrosine and serine/threonine phosphorylation in normal HBE cells and breast cancer MCF-7 cells.
format Text
id pubmed-59887
institution National Center for Biotechnology Information
language English
publishDate 2001
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-598872001-11-21 The linkage between β1 integrin and the actin cytoskeleton is differentially regulated by tyrosine and serine/threonine phosphorylation of β1 integrin in normal and cancerous human breast cells Takahashi, Kazuhide BMC Cell Biol Research Article BACKGROUND: Structural requirements for the β1 integrin functions in cell adhesion, spreading and signaling have been well documented mainly for fibroblasts. In this study, we examined the reason for the reduced surface expression of β1 integrin in human breast cancer MCF-7 cells compared to normal human breast epithelial (HBE) cells, both of which adhered to collagen type IV. RESULTS: The β1 integrin immunoprecipitates from either HBE or MCF-7 cells involved α-actinin while actin coprecipitated with β1 integrin from HBE cells but not from MCF-7 cells. Immunoblotting using the anti-phosphotyrosine (PY) antibody indicated the phosphorylation of β1 integrin at least at tyrosine in both cells. Dephosphorylation of β1 integrin from HBE cells by protein tyrosine phosphatase (PTP), but not by protein serine/threonine phosphatase (PP), caused dissociation of actin from β1 integrin, although dephosphorylation of it from MCF-7 cells by either PTP or PP caused association of the two proteins. In MCF-7 cells β1 integrin coprecipitated doublet of proteins having the Ca(2+)/calmodulin-dependent protein kinase (CaMK) II activity that was susceptible to KN-62, a specific inhibitor of CaMKII. CONCLUSION: The results suggest that β1 integrin is tyrosine phosphorylated and links with actin via α-actinin in HBE cells but prevented from linking with actin in MCF-7 cells by phosphorylation at both tyrosine and serine/threonine of β1 integrin which forms a complex with α-actinin and CaMKII. Thus the linkage formation of β1 integrin with actin may be differentially regulated by its tyrosine and serine/threonine phosphorylation in normal HBE cells and breast cancer MCF-7 cells. BioMed Central 2001-11-08 /pmc/articles/PMC59887/ /pubmed/11716783 http://dx.doi.org/10.1186/1471-2121-2-23 Text en Copyright © 2001 Takahashi; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
spellingShingle Research Article
Takahashi, Kazuhide
The linkage between β1 integrin and the actin cytoskeleton is differentially regulated by tyrosine and serine/threonine phosphorylation of β1 integrin in normal and cancerous human breast cells
title The linkage between β1 integrin and the actin cytoskeleton is differentially regulated by tyrosine and serine/threonine phosphorylation of β1 integrin in normal and cancerous human breast cells
title_full The linkage between β1 integrin and the actin cytoskeleton is differentially regulated by tyrosine and serine/threonine phosphorylation of β1 integrin in normal and cancerous human breast cells
title_fullStr The linkage between β1 integrin and the actin cytoskeleton is differentially regulated by tyrosine and serine/threonine phosphorylation of β1 integrin in normal and cancerous human breast cells
title_full_unstemmed The linkage between β1 integrin and the actin cytoskeleton is differentially regulated by tyrosine and serine/threonine phosphorylation of β1 integrin in normal and cancerous human breast cells
title_short The linkage between β1 integrin and the actin cytoskeleton is differentially regulated by tyrosine and serine/threonine phosphorylation of β1 integrin in normal and cancerous human breast cells
title_sort linkage between β1 integrin and the actin cytoskeleton is differentially regulated by tyrosine and serine/threonine phosphorylation of β1 integrin in normal and cancerous human breast cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC59887/
https://www.ncbi.nlm.nih.gov/pubmed/11716783
http://dx.doi.org/10.1186/1471-2121-2-23
work_keys_str_mv AT takahashikazuhide thelinkagebetweenb1integrinandtheactincytoskeletonisdifferentiallyregulatedbytyrosineandserinethreoninephosphorylationofb1integrininnormalandcanceroushumanbreastcells
AT takahashikazuhide linkagebetweenb1integrinandtheactincytoskeletonisdifferentiallyregulatedbytyrosineandserinethreoninephosphorylationofb1integrininnormalandcanceroushumanbreastcells