Cargando…
Semi-Supervised Maximum Discriminative Local Margin for Gene Selection
In the present study, we introduce a novel semi-supervised method called the semi-supervised maximum discriminative local margin (semiMM) for gene selection in expression data. The semiMM is a “filter” approach that exploits local structure, variance, and mutual information. We first constructed a l...
Autores principales: | Li, Zejun, Liao, Bo, Cai, Lijun, Chen, Min, Liu, Wenhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988834/ https://www.ncbi.nlm.nih.gov/pubmed/29872069 http://dx.doi.org/10.1038/s41598-018-26806-6 |
Ejemplares similares
-
Maximum Neighborhood Margin Discriminant Projection for Classification
por: Gou, Jianping, et al.
Publicado: (2014) -
Semi-supervised classifier guided by discriminator
por: Jamroziński, Sebastian, et al.
Publicado: (2022) -
Semi-Supervised Fuzzy Clustering with Feature Discrimination
por: Li, Longlong, et al.
Publicado: (2015) -
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022) -
Gene function prediction based on combining gene ontology hierarchy with multi-instance multi-label learning
por: Li, Zejun, et al.
Publicado: (2018)