Cargando…

GPU based parallel acceleration for fast C-arm cone-beam CT reconstruction

BACKGROUND: With the introduction of Flat Panel Detector technology, cone-beam CT (CBCT) has become a novel image modality, and widely applied in clinical practices. C-arm mounted CBCT has shown extra suitability in image guided interventional surgeries. During practice, how to acquire high resoluti...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Ken, Wang, Cheng, Xiong, Jing, Xie, Yaoqin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989405/
https://www.ncbi.nlm.nih.gov/pubmed/29871659
http://dx.doi.org/10.1186/s12938-018-0506-4
Descripción
Sumario:BACKGROUND: With the introduction of Flat Panel Detector technology, cone-beam CT (CBCT) has become a novel image modality, and widely applied in clinical practices. C-arm mounted CBCT has shown extra suitability in image guided interventional surgeries. During practice, how to acquire high resolution and high quality 3D images with the real time requirement of clinical applications remain challenging. METHODS: In this paper, we propose a GPU based accelerated method for fast C-arm CBCT 3D image reconstructions. A filtered back projection method is optimized and implemented with GPU parallel acceleration technique. A distributed system is designed to make full use of the image acquisition consumption to hide the reconstruction delay to further improve system performance. RESULTS: With the acceleration both in algorithm and system design, we show that our method significantly increases system efficiency. The optimized GPU accelerated FDK algorithm improves the reconstruction efficiency. The system performance is further enhanced with the proposed system design by 26% and reconstruction delay is accelerated by 2.1 times when 90 frames of projections are used. When the number of frames used increases to 120, the numbers are 39% and 3.3 times. We also show that when the projection acquisition consumption increases, the reconstruction acceleration rate increases significantly.