Cargando…

Computational modeling of methionine cycle-based metabolism and DNA methylation and the implications for anti-cancer drug response prediction

The relationship between metabolism and methylation is considered to be an important aspect of cancer development and drug efficacy. However, it remains poorly defined how to apply this aspect to improve preclinical disease characterization and clinical treatment outcome. Using available molecular i...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Mengying, Saad, Christian, Le, Lien, Halfter, Kathrin, Bauer, Bernhard, Mansmann, Ulrich R., Li, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989406/
https://www.ncbi.nlm.nih.gov/pubmed/29875994
http://dx.doi.org/10.18632/oncotarget.24547
Descripción
Sumario:The relationship between metabolism and methylation is considered to be an important aspect of cancer development and drug efficacy. However, it remains poorly defined how to apply this aspect to improve preclinical disease characterization and clinical treatment outcome. Using available molecular information from Kyoto Encyclopedia of Genes and Genomes (KEGG) and literature, we constructed a large-scale knowledge-based metabolic in silico model. For the purpose of model validation, we applied data from the Cancer Cell Line Encyclopedia (CCLE) to investigate computationally the impact of metabolism on chemotherapy efficacy. In our model, different metabolic components such as MAT2A, ATP6V0E1, NNMT involved in methionine cycle correlate with biologically measured chemotherapy outcome (IC50) that are in agreement with findings of independent studies. These proteins are potentially also involved in cellular methylation processes. In addition, several components such as 3,4-dihydoxymandelate, PAPSS2, UPP1 from metabolic pathways involved in the production of purine and pyrimidine correlate with IC50. This study clearly demonstrates that complex computational approaches can reflect findings of biological experiments. This demonstrates their high potential to grasp complex issues within systems medicine such as response prediction, biomarker identification using available data resources.