Cargando…
Antioxidants inhibit low density lipoprotein oxidation less at lysosomal pH: A possible explanation as to why the clinical trials of antioxidants might have failed
Oxidised low density lipoprotein (LDL) was considered to be important in the pathogenesis of atherosclerosis, but the large clinical trials of antioxidants, including the first one using probucol (the PQRST Trial), failed to show benefit and have cast doubt on the importance of oxidised LDL. We have...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science Ireland Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989656/ https://www.ncbi.nlm.nih.gov/pubmed/29518380 http://dx.doi.org/10.1016/j.chemphyslip.2018.03.001 |
_version_ | 1783329503969280000 |
---|---|
author | Ahmad, Feroz Leake, David S. |
author_facet | Ahmad, Feroz Leake, David S. |
author_sort | Ahmad, Feroz |
collection | PubMed |
description | Oxidised low density lipoprotein (LDL) was considered to be important in the pathogenesis of atherosclerosis, but the large clinical trials of antioxidants, including the first one using probucol (the PQRST Trial), failed to show benefit and have cast doubt on the importance of oxidised LDL. We have shown previously that LDL oxidation can be catalysed by iron in the lysosomes of macrophages. The aim of this study was therefore to investigate the effectiveness of antioxidants in preventing LDL oxidation at lysosomal pH and also establish the possible mechanism of oxidation. Probucol did not effectively inhibit the oxidation of LDL at lysosomal pH, as measured by conjugated dienes or oxidised cholesteryl esters or tryptophan residues in isolated LDL or by ceroid formation in the lysosomes of macrophage-like cells, in marked contrast to its highly effective inhibition of LDL oxidation at pH 7.4. LDL oxidation at lysosomal pH was inhibited very effectively for long periods by N,N'-diphenyl-1,4-phenylenediamine, which is more hydrophobic than probucol and has been shown by others to inhibit atherosclerosis in rabbits, and by cysteamine, which is a hydrophilic antioxidant that accumulates in lysosomes. Iron-induced LDL oxidation might be due to the formation of the superoxide radical, which protonates at lysosomal pH to form the much more reactive, hydrophobic hydroperoxyl radical, which can enter LDL and reach its core. Probucol resides mainly in the surface monolayer of LDL and would not effectively scavenge hydroperoxyl radicals in the core of LDL. This might explain why probucol failed to protect against atherosclerosis in various clinical trials. The oxidised LDL hypothesis of atherosclerosis now needs to be re-evaluated using different and more effective antioxidants that protect against the lysosomal oxidation of LDL. |
format | Online Article Text |
id | pubmed-5989656 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier Science Ireland Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-59896562018-07-01 Antioxidants inhibit low density lipoprotein oxidation less at lysosomal pH: A possible explanation as to why the clinical trials of antioxidants might have failed Ahmad, Feroz Leake, David S. Chem Phys Lipids Article Oxidised low density lipoprotein (LDL) was considered to be important in the pathogenesis of atherosclerosis, but the large clinical trials of antioxidants, including the first one using probucol (the PQRST Trial), failed to show benefit and have cast doubt on the importance of oxidised LDL. We have shown previously that LDL oxidation can be catalysed by iron in the lysosomes of macrophages. The aim of this study was therefore to investigate the effectiveness of antioxidants in preventing LDL oxidation at lysosomal pH and also establish the possible mechanism of oxidation. Probucol did not effectively inhibit the oxidation of LDL at lysosomal pH, as measured by conjugated dienes or oxidised cholesteryl esters or tryptophan residues in isolated LDL or by ceroid formation in the lysosomes of macrophage-like cells, in marked contrast to its highly effective inhibition of LDL oxidation at pH 7.4. LDL oxidation at lysosomal pH was inhibited very effectively for long periods by N,N'-diphenyl-1,4-phenylenediamine, which is more hydrophobic than probucol and has been shown by others to inhibit atherosclerosis in rabbits, and by cysteamine, which is a hydrophilic antioxidant that accumulates in lysosomes. Iron-induced LDL oxidation might be due to the formation of the superoxide radical, which protonates at lysosomal pH to form the much more reactive, hydrophobic hydroperoxyl radical, which can enter LDL and reach its core. Probucol resides mainly in the surface monolayer of LDL and would not effectively scavenge hydroperoxyl radicals in the core of LDL. This might explain why probucol failed to protect against atherosclerosis in various clinical trials. The oxidised LDL hypothesis of atherosclerosis now needs to be re-evaluated using different and more effective antioxidants that protect against the lysosomal oxidation of LDL. Elsevier Science Ireland Ltd 2018-07 /pmc/articles/PMC5989656/ /pubmed/29518380 http://dx.doi.org/10.1016/j.chemphyslip.2018.03.001 Text en © 2018 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ahmad, Feroz Leake, David S. Antioxidants inhibit low density lipoprotein oxidation less at lysosomal pH: A possible explanation as to why the clinical trials of antioxidants might have failed |
title | Antioxidants inhibit low density lipoprotein oxidation less at lysosomal pH: A possible explanation as to why the clinical trials of antioxidants might have failed |
title_full | Antioxidants inhibit low density lipoprotein oxidation less at lysosomal pH: A possible explanation as to why the clinical trials of antioxidants might have failed |
title_fullStr | Antioxidants inhibit low density lipoprotein oxidation less at lysosomal pH: A possible explanation as to why the clinical trials of antioxidants might have failed |
title_full_unstemmed | Antioxidants inhibit low density lipoprotein oxidation less at lysosomal pH: A possible explanation as to why the clinical trials of antioxidants might have failed |
title_short | Antioxidants inhibit low density lipoprotein oxidation less at lysosomal pH: A possible explanation as to why the clinical trials of antioxidants might have failed |
title_sort | antioxidants inhibit low density lipoprotein oxidation less at lysosomal ph: a possible explanation as to why the clinical trials of antioxidants might have failed |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989656/ https://www.ncbi.nlm.nih.gov/pubmed/29518380 http://dx.doi.org/10.1016/j.chemphyslip.2018.03.001 |
work_keys_str_mv | AT ahmadferoz antioxidantsinhibitlowdensitylipoproteinoxidationlessatlysosomalphapossibleexplanationastowhytheclinicaltrialsofantioxidantsmighthavefailed AT leakedavids antioxidantsinhibitlowdensitylipoproteinoxidationlessatlysosomalphapossibleexplanationastowhytheclinicaltrialsofantioxidantsmighthavefailed |