Cargando…

Ease of disassembly of products to support circular economy strategies

Circular economy strategies encourage, among others, concrete actions to extend the product lifetime. Product’s repair and reuse, and component harvesting for reuse, all require the facilitated access to product components. Consequently, a reduction of the disassembly time and the related costs will...

Descripción completa

Detalles Bibliográficos
Autores principales: Vanegas, Paul, Peeters, Jef R., Cattrysse, Dirk, Tecchio, Paolo, Ardente, Fulvio, Mathieux, Fabrice, Dewulf, Wim, Duflou, Joost R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989810/
https://www.ncbi.nlm.nih.gov/pubmed/30078953
http://dx.doi.org/10.1016/j.resconrec.2017.06.022
_version_ 1783329521670291456
author Vanegas, Paul
Peeters, Jef R.
Cattrysse, Dirk
Tecchio, Paolo
Ardente, Fulvio
Mathieux, Fabrice
Dewulf, Wim
Duflou, Joost R.
author_facet Vanegas, Paul
Peeters, Jef R.
Cattrysse, Dirk
Tecchio, Paolo
Ardente, Fulvio
Mathieux, Fabrice
Dewulf, Wim
Duflou, Joost R.
author_sort Vanegas, Paul
collection PubMed
description Circular economy strategies encourage, among others, concrete actions to extend the product lifetime. Product’s repair and reuse, and component harvesting for reuse, all require the facilitated access to product components. Consequently, a reduction of the disassembly time and the related costs will increase the economic feasibility of product lifetime extension and therefore increase the viability of a circular economy in industrialised regions. Furthermore, disassembly has the potential to significantly increase the recycling yield and purity for precious metals, critical metals and plastics. For this reason, the European Commission and several ecolabels have considered to include design for disassembly requirements in legislation or voluntary environmental instruments. However, up to date, there is no standardised method to evaluate the ease of disassembly in an unambiguous manner with a good trade-off between the efforts required to apply the method and the accuracy of the determined disassembly time. The article proposes a robust method “eDiM” (ease of Disassembly Metric), to calculate the disassembly time based on the Maynard operation sequence technique (MOST). A straightforward calculation sheet is employed in eDiM to calculate the disassembly time given the sequence of actions and basic product information. This makes the results fully verifiable in an unambiguous manner, which makes eDiM suited to be used in policy measures in contrast to the results of prior developed methods One of the innovative aspects of eDiM is the categorization of disassembly tasks in six categories, which provides better insights on which disassembly tasks are the most time consuming and how the product design could be improved. The proposed method is illustrated by means of a case study of an LCD monitor. The presented case study demonstrates how the proposed method can be used in a policy context and how the calculated disassembly times per category can provide insights to manufacturers to improve the disassemblability of their products. The results also demonstrate how the proposed method can produce realistic results with only limited detail of input data.
format Online
Article
Text
id pubmed-5989810
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier B.V
record_format MEDLINE/PubMed
spelling pubmed-59898102018-08-01 Ease of disassembly of products to support circular economy strategies Vanegas, Paul Peeters, Jef R. Cattrysse, Dirk Tecchio, Paolo Ardente, Fulvio Mathieux, Fabrice Dewulf, Wim Duflou, Joost R. Resour Conserv Recycl Article Circular economy strategies encourage, among others, concrete actions to extend the product lifetime. Product’s repair and reuse, and component harvesting for reuse, all require the facilitated access to product components. Consequently, a reduction of the disassembly time and the related costs will increase the economic feasibility of product lifetime extension and therefore increase the viability of a circular economy in industrialised regions. Furthermore, disassembly has the potential to significantly increase the recycling yield and purity for precious metals, critical metals and plastics. For this reason, the European Commission and several ecolabels have considered to include design for disassembly requirements in legislation or voluntary environmental instruments. However, up to date, there is no standardised method to evaluate the ease of disassembly in an unambiguous manner with a good trade-off between the efforts required to apply the method and the accuracy of the determined disassembly time. The article proposes a robust method “eDiM” (ease of Disassembly Metric), to calculate the disassembly time based on the Maynard operation sequence technique (MOST). A straightforward calculation sheet is employed in eDiM to calculate the disassembly time given the sequence of actions and basic product information. This makes the results fully verifiable in an unambiguous manner, which makes eDiM suited to be used in policy measures in contrast to the results of prior developed methods One of the innovative aspects of eDiM is the categorization of disassembly tasks in six categories, which provides better insights on which disassembly tasks are the most time consuming and how the product design could be improved. The proposed method is illustrated by means of a case study of an LCD monitor. The presented case study demonstrates how the proposed method can be used in a policy context and how the calculated disassembly times per category can provide insights to manufacturers to improve the disassemblability of their products. The results also demonstrate how the proposed method can produce realistic results with only limited detail of input data. Elsevier B.V 2018-08 /pmc/articles/PMC5989810/ /pubmed/30078953 http://dx.doi.org/10.1016/j.resconrec.2017.06.022 Text en © 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Vanegas, Paul
Peeters, Jef R.
Cattrysse, Dirk
Tecchio, Paolo
Ardente, Fulvio
Mathieux, Fabrice
Dewulf, Wim
Duflou, Joost R.
Ease of disassembly of products to support circular economy strategies
title Ease of disassembly of products to support circular economy strategies
title_full Ease of disassembly of products to support circular economy strategies
title_fullStr Ease of disassembly of products to support circular economy strategies
title_full_unstemmed Ease of disassembly of products to support circular economy strategies
title_short Ease of disassembly of products to support circular economy strategies
title_sort ease of disassembly of products to support circular economy strategies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989810/
https://www.ncbi.nlm.nih.gov/pubmed/30078953
http://dx.doi.org/10.1016/j.resconrec.2017.06.022
work_keys_str_mv AT vanegaspaul easeofdisassemblyofproductstosupportcirculareconomystrategies
AT peetersjefr easeofdisassemblyofproductstosupportcirculareconomystrategies
AT cattryssedirk easeofdisassemblyofproductstosupportcirculareconomystrategies
AT tecchiopaolo easeofdisassemblyofproductstosupportcirculareconomystrategies
AT ardentefulvio easeofdisassemblyofproductstosupportcirculareconomystrategies
AT mathieuxfabrice easeofdisassemblyofproductstosupportcirculareconomystrategies
AT dewulfwim easeofdisassemblyofproductstosupportcirculareconomystrategies
AT dufloujoostr easeofdisassemblyofproductstosupportcirculareconomystrategies