Cargando…
Automated Deep Learning-Based System to Identify Endothelial Cells Derived from Induced Pluripotent Stem Cells
Deep learning technology is rapidly advancing and is now used to solve complex problems. Here, we used deep learning in convolutional neural networks to establish an automated method to identify endothelial cells derived from induced pluripotent stem cells (iPSCs), without the need for immunostainin...
Autores principales: | Kusumoto, Dai, Lachmann, Mark, Kunihiro, Takeshi, Yuasa, Shinsuke, Kishino, Yoshikazu, Kimura, Mai, Katsuki, Toshiomi, Itoh, Shogo, Seki, Tomohisa, Fukuda, Keiichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989816/ https://www.ncbi.nlm.nih.gov/pubmed/29754958 http://dx.doi.org/10.1016/j.stemcr.2018.04.007 |
Ejemplares similares
-
Generation of Induced Pluripotent Stem Cells from Human Peripheral T Cells Using Sendai Virus in Feeder-free Conditions
por: Kishino, Yoshikazu, et al.
Publicado: (2015) -
Anti-senescent drug screening by deep learning-based morphology senescence scoring
por: Kusumoto, Dai, et al.
Publicado: (2021) -
Derivation of Transgene-Free Human Induced Pluripotent Stem Cells from Human Peripheral T Cells in Defined Culture Conditions
por: Kishino, Yoshikazu, et al.
Publicado: (2014) -
Induced Pluripotent Stem Cell-Based Drug Screening by Use of Artificial Intelligence
por: Kusumoto, Dai, et al.
Publicado: (2022) -
Generation and Characterization of Functional Cardiomyocytes Derived from Human T Cell-Derived Induced Pluripotent Stem Cells
por: Seki, Tomohisa, et al.
Publicado: (2014)