Cargando…

Krüppel‐like factor 4 promotes c‐Met amplification‐mediated gefitinib resistance in non‐small‐cell lung cancer

Gefitinib has been widely used in the first‐line treatment of advanced EGFR‐mutated non‐small‐cell lung cancer (NSCLC). However, many NSCLC patients will acquire resistance to gefitinib after 9‐14 months of treatment. This study revealed that Krüppel‐like factor 4 (KLF4) contributes to the formation...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Wei, Xie, Qianyi, Liu, Suo, Ji, Ying, Li, Chunyun, Wang, Chunle, Jin, Longyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989843/
https://www.ncbi.nlm.nih.gov/pubmed/29624806
http://dx.doi.org/10.1111/cas.13601
Descripción
Sumario:Gefitinib has been widely used in the first‐line treatment of advanced EGFR‐mutated non‐small‐cell lung cancer (NSCLC). However, many NSCLC patients will acquire resistance to gefitinib after 9‐14 months of treatment. This study revealed that Krüppel‐like factor 4 (KLF4) contributes to the formation of gefitinib resistance in c‐Met‐overexpressing NSCLC cells. We observed that KLF4 was overexpressed in c‐Met‐overexpressing NSCLC cells and tissues. Knockdown of KLF4 increased tumorigenic properties in gefitinib‐resistant NSCLC cell lines without c‐Met overexpression, but it reduced tumorigenic properties and increased gefitinib sensitivity in gefitinib‐resistant NSCLC cells with c‐Met overexpression, whereas overexpression of KLF4 reduced gefitinib sensitivity in gefitinib‐sensitive NSCLC cells. Furthermore, Western blot analysis revealed that KLF4 contributed to the formation of gefitinib resistance in c‐Met‐overexpressing NSCLC cells by inhibiting the expression of apoptosis‐related proteins under gefitinib treatment and activating the c‐Met/Akt signaling pathway by decreasing the inhibition of β‐catenin on phosphorylation of c‐Met to prevent blockade by gefitinib. In summary, this study's results suggest that KLF4 is a promising candidate molecular target for both prevention and therapy of NSCLC with c‐Met overexpression.