Cargando…
Ensemble stacking mitigates biases in inference of synaptic connectivity
A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections...
Autores principales: | Chambers, Brendan, Levy, Maayan, Dechery, Joseph B., MacLean, Jason N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989998/ https://www.ncbi.nlm.nih.gov/pubmed/29911678 http://dx.doi.org/10.1162/NETN_a_00032 |
Ejemplares similares
-
Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks
por: Chambers, Brendan, et al.
Publicado: (2016) -
Functional triplet motifs underlie accurate predictions of single-trial responses in populations of tuned and untuned V1 neurons
por: Dechery, Joseph B., et al.
Publicado: (2018) -
Network Analysis of Murine Cortical Dynamics Implicates Untuned Neurons in Visual Stimulus Coding
por: Levy, Maayan, et al.
Publicado: (2020) -
An R package for ensemble learning stacking
por: Nukui, Taichi, et al.
Publicado: (2023) -
Stacking Ensemble Technique for Classifying Breast Cancer
por: Kwon, Hyunjin, et al.
Publicado: (2019)