Cargando…
Collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course: a proof-of-principle study
Background: Multiple sclerosis has an extremely variable natural course. In most patients, disease starts with a relapsing-remitting (RR) phase, which proceeds to a secondary progressive (SP) form. The duration of the RR phase is hard to predict, and to date predictions on the rate of disease progre...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990125/ https://www.ncbi.nlm.nih.gov/pubmed/29904574 http://dx.doi.org/10.12688/f1000research.13114.2 |
_version_ | 1783329556169490432 |
---|---|
author | Tacchella, Andrea Romano, Silvia Ferraldeschi, Michela Salvetti, Marco Zaccaria, Andrea Crisanti, Andrea Grassi, Francesca |
author_facet | Tacchella, Andrea Romano, Silvia Ferraldeschi, Michela Salvetti, Marco Zaccaria, Andrea Crisanti, Andrea Grassi, Francesca |
author_sort | Tacchella, Andrea |
collection | PubMed |
description | Background: Multiple sclerosis has an extremely variable natural course. In most patients, disease starts with a relapsing-remitting (RR) phase, which proceeds to a secondary progressive (SP) form. The duration of the RR phase is hard to predict, and to date predictions on the rate of disease progression remain suboptimal. This limits the opportunity to tailor therapy on an individual patient's prognosis, in spite of the choice of several therapeutic options. Approaches to improve clinical decisions, such as collective intelligence of human groups and machine learning algorithms are widely investigated. Methods: Medical students and a machine learning algorithm predicted the course of disease on the basis of randomly chosen clinical records of patients that attended at the Multiple Sclerosis service of Sant'Andrea hospital in Rome. Results: A significant improvement of predictive ability was obtained when predictions were combined with a weight that depends on the consistence of human (or algorithm) forecasts on a given clinical record. Conclusions: In this work we present proof-of-principle that human-machine hybrid predictions yield better prognoses than machine learning algorithms or groups of humans alone. To strengthen and generalize this preliminary result, we propose a crowdsourcing initiative to collect prognoses by physicians on an expanded set of patients. |
format | Online Article Text |
id | pubmed-5990125 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | F1000 Research Limited |
record_format | MEDLINE/PubMed |
spelling | pubmed-59901252018-06-13 Collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course: a proof-of-principle study Tacchella, Andrea Romano, Silvia Ferraldeschi, Michela Salvetti, Marco Zaccaria, Andrea Crisanti, Andrea Grassi, Francesca F1000Res Research Article Background: Multiple sclerosis has an extremely variable natural course. In most patients, disease starts with a relapsing-remitting (RR) phase, which proceeds to a secondary progressive (SP) form. The duration of the RR phase is hard to predict, and to date predictions on the rate of disease progression remain suboptimal. This limits the opportunity to tailor therapy on an individual patient's prognosis, in spite of the choice of several therapeutic options. Approaches to improve clinical decisions, such as collective intelligence of human groups and machine learning algorithms are widely investigated. Methods: Medical students and a machine learning algorithm predicted the course of disease on the basis of randomly chosen clinical records of patients that attended at the Multiple Sclerosis service of Sant'Andrea hospital in Rome. Results: A significant improvement of predictive ability was obtained when predictions were combined with a weight that depends on the consistence of human (or algorithm) forecasts on a given clinical record. Conclusions: In this work we present proof-of-principle that human-machine hybrid predictions yield better prognoses than machine learning algorithms or groups of humans alone. To strengthen and generalize this preliminary result, we propose a crowdsourcing initiative to collect prognoses by physicians on an expanded set of patients. F1000 Research Limited 2018-08-01 /pmc/articles/PMC5990125/ /pubmed/29904574 http://dx.doi.org/10.12688/f1000research.13114.2 Text en Copyright: © 2018 Tacchella A et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Tacchella, Andrea Romano, Silvia Ferraldeschi, Michela Salvetti, Marco Zaccaria, Andrea Crisanti, Andrea Grassi, Francesca Collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course: a proof-of-principle study |
title | Collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course: a proof-of-principle study |
title_full | Collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course: a proof-of-principle study |
title_fullStr | Collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course: a proof-of-principle study |
title_full_unstemmed | Collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course: a proof-of-principle study |
title_short | Collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course: a proof-of-principle study |
title_sort | collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course: a proof-of-principle study |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990125/ https://www.ncbi.nlm.nih.gov/pubmed/29904574 http://dx.doi.org/10.12688/f1000research.13114.2 |
work_keys_str_mv | AT tacchellaandrea collaborationbetweenahumangroupandartificialintelligencecanimprovepredictionofmultiplesclerosiscourseaproofofprinciplestudy AT romanosilvia collaborationbetweenahumangroupandartificialintelligencecanimprovepredictionofmultiplesclerosiscourseaproofofprinciplestudy AT ferraldeschimichela collaborationbetweenahumangroupandartificialintelligencecanimprovepredictionofmultiplesclerosiscourseaproofofprinciplestudy AT salvettimarco collaborationbetweenahumangroupandartificialintelligencecanimprovepredictionofmultiplesclerosiscourseaproofofprinciplestudy AT zaccariaandrea collaborationbetweenahumangroupandartificialintelligencecanimprovepredictionofmultiplesclerosiscourseaproofofprinciplestudy AT crisantiandrea collaborationbetweenahumangroupandartificialintelligencecanimprovepredictionofmultiplesclerosiscourseaproofofprinciplestudy AT grassifrancesca collaborationbetweenahumangroupandartificialintelligencecanimprovepredictionofmultiplesclerosiscourseaproofofprinciplestudy |