Cargando…
Modification of α-synuclein by lipid peroxidation products derived from polyunsaturated fatty acids promotes toxic oligomerization: its relevance to Parkinson disease
Recently, toxic α-synuclein oligomer, which can mediate cell-to-cell propagation is suggested to cause sporadic Parkinson disease. α-Synuclein interacts with membrane lipids especially polyunsaturated fatty acids to stabilize its three-dementional structure. Peroxidation of polyunsaturated fatty aci...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
the Society for Free Radical Research Japan
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990400/ https://www.ncbi.nlm.nih.gov/pubmed/29892158 http://dx.doi.org/10.3164/jcbn.18-25 |
_version_ | 1783329574707265536 |
---|---|
author | Shamoto-Nagai, Masayo Hisaka, Shinsuke Naoi, Makoto Maruyama, Wakako |
author_facet | Shamoto-Nagai, Masayo Hisaka, Shinsuke Naoi, Makoto Maruyama, Wakako |
author_sort | Shamoto-Nagai, Masayo |
collection | PubMed |
description | Recently, toxic α-synuclein oligomer, which can mediate cell-to-cell propagation is suggested to cause sporadic Parkinson disease. α-Synuclein interacts with membrane lipids especially polyunsaturated fatty acids to stabilize its three-dementional structure. Peroxidation of polyunsaturated fatty acids may reduce their affinity to α-synuclein and peroxidation byproducts might modify α-synuclein. 4-Hydroxy-2-nonenal derived from n-6 polyunsaturated fatty acids was reported to modify α-synuclein to produce a toxic oligomer. Moreover, the accumulation of 4-hydroxy-2-nonenal, which could induce oligomeriztion of α-synuclein, was found in parkinsonian brains. Docosahexaenoic acid, an n-3 polyunsaturated fatty acids abundant in the neuronal membrane, was also found to enhance α-synuclein oligomerization; however, the precise details of the chemical reaction involved are unclear. Propanoylated lysine, a specific indicator of docosahexaenoic acid oxidation, was increased in neuronal differentiated human neuroblastoma SH-SY5Y cells overexpressing α-synuclein. α-Synuclein might be modified by the peroxidation products and then, is degraded by the autophagy-lysosome system. In addition, in the cells overexpressing α-synuclein, the mitochondrial electrone transfer chain was found to be inhibited. Accumulation of abnormal α-synuclein modified by lipid radicals derived from polyunsaturated fatty acids may be not only an indicator of brain oxidative stress but also causative of neurodegeneration such as Parkinson disease by impairing mitochondrial function. |
format | Online Article Text |
id | pubmed-5990400 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | the Society for Free Radical Research Japan |
record_format | MEDLINE/PubMed |
spelling | pubmed-59904002018-06-11 Modification of α-synuclein by lipid peroxidation products derived from polyunsaturated fatty acids promotes toxic oligomerization: its relevance to Parkinson disease Shamoto-Nagai, Masayo Hisaka, Shinsuke Naoi, Makoto Maruyama, Wakako J Clin Biochem Nutr Original Article Recently, toxic α-synuclein oligomer, which can mediate cell-to-cell propagation is suggested to cause sporadic Parkinson disease. α-Synuclein interacts with membrane lipids especially polyunsaturated fatty acids to stabilize its three-dementional structure. Peroxidation of polyunsaturated fatty acids may reduce their affinity to α-synuclein and peroxidation byproducts might modify α-synuclein. 4-Hydroxy-2-nonenal derived from n-6 polyunsaturated fatty acids was reported to modify α-synuclein to produce a toxic oligomer. Moreover, the accumulation of 4-hydroxy-2-nonenal, which could induce oligomeriztion of α-synuclein, was found in parkinsonian brains. Docosahexaenoic acid, an n-3 polyunsaturated fatty acids abundant in the neuronal membrane, was also found to enhance α-synuclein oligomerization; however, the precise details of the chemical reaction involved are unclear. Propanoylated lysine, a specific indicator of docosahexaenoic acid oxidation, was increased in neuronal differentiated human neuroblastoma SH-SY5Y cells overexpressing α-synuclein. α-Synuclein might be modified by the peroxidation products and then, is degraded by the autophagy-lysosome system. In addition, in the cells overexpressing α-synuclein, the mitochondrial electrone transfer chain was found to be inhibited. Accumulation of abnormal α-synuclein modified by lipid radicals derived from polyunsaturated fatty acids may be not only an indicator of brain oxidative stress but also causative of neurodegeneration such as Parkinson disease by impairing mitochondrial function. the Society for Free Radical Research Japan 2018-05 2018-05-01 /pmc/articles/PMC5990400/ /pubmed/29892158 http://dx.doi.org/10.3164/jcbn.18-25 Text en Copyright © 2018 JCBN http://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Shamoto-Nagai, Masayo Hisaka, Shinsuke Naoi, Makoto Maruyama, Wakako Modification of α-synuclein by lipid peroxidation products derived from polyunsaturated fatty acids promotes toxic oligomerization: its relevance to Parkinson disease |
title | Modification of α-synuclein by lipid peroxidation products derived from polyunsaturated fatty acids promotes toxic oligomerization: its relevance to Parkinson disease |
title_full | Modification of α-synuclein by lipid peroxidation products derived from polyunsaturated fatty acids promotes toxic oligomerization: its relevance to Parkinson disease |
title_fullStr | Modification of α-synuclein by lipid peroxidation products derived from polyunsaturated fatty acids promotes toxic oligomerization: its relevance to Parkinson disease |
title_full_unstemmed | Modification of α-synuclein by lipid peroxidation products derived from polyunsaturated fatty acids promotes toxic oligomerization: its relevance to Parkinson disease |
title_short | Modification of α-synuclein by lipid peroxidation products derived from polyunsaturated fatty acids promotes toxic oligomerization: its relevance to Parkinson disease |
title_sort | modification of α-synuclein by lipid peroxidation products derived from polyunsaturated fatty acids promotes toxic oligomerization: its relevance to parkinson disease |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990400/ https://www.ncbi.nlm.nih.gov/pubmed/29892158 http://dx.doi.org/10.3164/jcbn.18-25 |
work_keys_str_mv | AT shamotonagaimasayo modificationofasynucleinbylipidperoxidationproductsderivedfrompolyunsaturatedfattyacidspromotestoxicoligomerizationitsrelevancetoparkinsondisease AT hisakashinsuke modificationofasynucleinbylipidperoxidationproductsderivedfrompolyunsaturatedfattyacidspromotestoxicoligomerizationitsrelevancetoparkinsondisease AT naoimakoto modificationofasynucleinbylipidperoxidationproductsderivedfrompolyunsaturatedfattyacidspromotestoxicoligomerizationitsrelevancetoparkinsondisease AT maruyamawakako modificationofasynucleinbylipidperoxidationproductsderivedfrompolyunsaturatedfattyacidspromotestoxicoligomerizationitsrelevancetoparkinsondisease |