Cargando…

Dissection of DNA double-strand break repair using novel single-molecule forceps

Repairing DNA double-strand breaks (DSBs) by non-homologous end-joining (NHEJ) requires multiple proteins to recognize and bind DNA ends, process them for compatibility, and ligate them together. We constructed novel DNA substrates for single-molecule nano-manipulation allowing us to mechanically de...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jing L., Duboc, Camille, Wu, Qian, Ochi, Takashi, Liang, Shikang, Tsutakawa, Susan E., Lees-Miller, Susan P., Nadal, Marc, Tainer, John A., Blundell, Tom L., Strick, Terence R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990469/
https://www.ncbi.nlm.nih.gov/pubmed/29786079
http://dx.doi.org/10.1038/s41594-018-0065-1
_version_ 1783329582374453248
author Wang, Jing L.
Duboc, Camille
Wu, Qian
Ochi, Takashi
Liang, Shikang
Tsutakawa, Susan E.
Lees-Miller, Susan P.
Nadal, Marc
Tainer, John A.
Blundell, Tom L.
Strick, Terence R.
author_facet Wang, Jing L.
Duboc, Camille
Wu, Qian
Ochi, Takashi
Liang, Shikang
Tsutakawa, Susan E.
Lees-Miller, Susan P.
Nadal, Marc
Tainer, John A.
Blundell, Tom L.
Strick, Terence R.
author_sort Wang, Jing L.
collection PubMed
description Repairing DNA double-strand breaks (DSBs) by non-homologous end-joining (NHEJ) requires multiple proteins to recognize and bind DNA ends, process them for compatibility, and ligate them together. We constructed novel DNA substrates for single-molecule nano-manipulation allowing us to mechanically detect, probe, and rupture in real-time DSB synapsis by specific human NHEJ components. DNA-PKcs and Ku allow DNA end synapsis on the 100 ms timescale, and addition of PAXX extends this lifetime to ~2s. Further addition of XRCC4, XLF and Ligase IV resulted in minute-scale synapsis and led to robust repair of both strands of the nanomanipulated DNA. The energetic contribution of the different components to synaptic stability is typically on the scale of a few kCal/mol. Our results define assembly rules for NHEJ machinery and unveil the importance of weak interactions, rapidly ruptured even at sub-picoNewton forces, in regulating this multicomponent chemomechanical system for genome integrity.
format Online
Article
Text
id pubmed-5990469
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-59904692018-11-21 Dissection of DNA double-strand break repair using novel single-molecule forceps Wang, Jing L. Duboc, Camille Wu, Qian Ochi, Takashi Liang, Shikang Tsutakawa, Susan E. Lees-Miller, Susan P. Nadal, Marc Tainer, John A. Blundell, Tom L. Strick, Terence R. Nat Struct Mol Biol Article Repairing DNA double-strand breaks (DSBs) by non-homologous end-joining (NHEJ) requires multiple proteins to recognize and bind DNA ends, process them for compatibility, and ligate them together. We constructed novel DNA substrates for single-molecule nano-manipulation allowing us to mechanically detect, probe, and rupture in real-time DSB synapsis by specific human NHEJ components. DNA-PKcs and Ku allow DNA end synapsis on the 100 ms timescale, and addition of PAXX extends this lifetime to ~2s. Further addition of XRCC4, XLF and Ligase IV resulted in minute-scale synapsis and led to robust repair of both strands of the nanomanipulated DNA. The energetic contribution of the different components to synaptic stability is typically on the scale of a few kCal/mol. Our results define assembly rules for NHEJ machinery and unveil the importance of weak interactions, rapidly ruptured even at sub-picoNewton forces, in regulating this multicomponent chemomechanical system for genome integrity. 2018-05-21 2018-06 /pmc/articles/PMC5990469/ /pubmed/29786079 http://dx.doi.org/10.1038/s41594-018-0065-1 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Wang, Jing L.
Duboc, Camille
Wu, Qian
Ochi, Takashi
Liang, Shikang
Tsutakawa, Susan E.
Lees-Miller, Susan P.
Nadal, Marc
Tainer, John A.
Blundell, Tom L.
Strick, Terence R.
Dissection of DNA double-strand break repair using novel single-molecule forceps
title Dissection of DNA double-strand break repair using novel single-molecule forceps
title_full Dissection of DNA double-strand break repair using novel single-molecule forceps
title_fullStr Dissection of DNA double-strand break repair using novel single-molecule forceps
title_full_unstemmed Dissection of DNA double-strand break repair using novel single-molecule forceps
title_short Dissection of DNA double-strand break repair using novel single-molecule forceps
title_sort dissection of dna double-strand break repair using novel single-molecule forceps
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990469/
https://www.ncbi.nlm.nih.gov/pubmed/29786079
http://dx.doi.org/10.1038/s41594-018-0065-1
work_keys_str_mv AT wangjingl dissectionofdnadoublestrandbreakrepairusingnovelsinglemoleculeforceps
AT duboccamille dissectionofdnadoublestrandbreakrepairusingnovelsinglemoleculeforceps
AT wuqian dissectionofdnadoublestrandbreakrepairusingnovelsinglemoleculeforceps
AT ochitakashi dissectionofdnadoublestrandbreakrepairusingnovelsinglemoleculeforceps
AT liangshikang dissectionofdnadoublestrandbreakrepairusingnovelsinglemoleculeforceps
AT tsutakawasusane dissectionofdnadoublestrandbreakrepairusingnovelsinglemoleculeforceps
AT leesmillersusanp dissectionofdnadoublestrandbreakrepairusingnovelsinglemoleculeforceps
AT nadalmarc dissectionofdnadoublestrandbreakrepairusingnovelsinglemoleculeforceps
AT tainerjohna dissectionofdnadoublestrandbreakrepairusingnovelsinglemoleculeforceps
AT blundelltoml dissectionofdnadoublestrandbreakrepairusingnovelsinglemoleculeforceps
AT strickterencer dissectionofdnadoublestrandbreakrepairusingnovelsinglemoleculeforceps