Cargando…
A predictive model for risk of early grade ≥ 3 infection in patients with multiple myeloma not eligible for transplant: analysis of the FIRST trial
Infections are a major cause of death in patients with multiple myeloma. A post hoc analysis of the phase 3 FIRST trial was conducted to characterize treatment-emergent (TE) infections and study risk factors for TE grade ≥ 3 infection. The number of TE infections/month was highest during the first 4...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990520/ https://www.ncbi.nlm.nih.gov/pubmed/29784907 http://dx.doi.org/10.1038/s41375-018-0133-x |
Sumario: | Infections are a major cause of death in patients with multiple myeloma. A post hoc analysis of the phase 3 FIRST trial was conducted to characterize treatment-emergent (TE) infections and study risk factors for TE grade ≥ 3 infection. The number of TE infections/month was highest during the first 4 months of treatment (defined as early infection). Of 1613 treated patients, 340 (21.1%) experienced TE grade ≥ 3 infections in the first 18 months and 56.2% of these patients experienced their first grade ≥ 3 infection in the first 4 months. Risk of early infection was similar regardless of treatment. Based on the analyses of data in 1378 patients through multivariate logistic regression, a predictive model of first TE grade ≥ 3 infection in the first 4 months retained Eastern Cooperative Oncology Group performance status and serum β(2)-microglobulin, lactate dehydrogenase, and hemoglobin levels to define high- and low-risk groups showing significantly different rates of infection (24.0% vs. 7.0%, respectively; P < 0.0001). The predictive model was validated with data from three clinical trials. This predictive model of early TE grade ≥ 3 infection may be applied in the clinical setting to guide infection monitoring and strategies for infection prevention. |
---|