Cargando…
Time-varying decision boundaries: insights from optimality analysis
The most widely used account of decision-making proposes that people choose between alternatives by accumulating evidence in favor of each alternative until this evidence reaches a decision boundary. It is frequently assumed that this decision boundary stays constant during a decision, depending on...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990589/ https://www.ncbi.nlm.nih.gov/pubmed/28730465 http://dx.doi.org/10.3758/s13423-017-1340-6 |
_version_ | 1783329606397329408 |
---|---|
author | Malhotra, Gaurav Leslie, David S. Ludwig, Casimir J. H. Bogacz, Rafal |
author_facet | Malhotra, Gaurav Leslie, David S. Ludwig, Casimir J. H. Bogacz, Rafal |
author_sort | Malhotra, Gaurav |
collection | PubMed |
description | The most widely used account of decision-making proposes that people choose between alternatives by accumulating evidence in favor of each alternative until this evidence reaches a decision boundary. It is frequently assumed that this decision boundary stays constant during a decision, depending on the evidence collected but not on time. Recent experimental and theoretical work has challenged this assumption, showing that constant decision boundaries are, in some circumstances, sub-optimal. We introduce a theoretical model that facilitates identification of the optimal decision boundaries under a wide range of conditions. Time-varying optimal decision boundaries for our model are a result only of uncertainty over the difficulty of each trial and do not require decision deadlines or costs associated with collecting evidence, as assumed by previous authors. Furthermore, the shape of optimal decision boundaries depends on the difficulties of different decisions. When some trials are very difficult, optimal boundaries decrease with time, but for tasks that only include a mixture of easy and medium difficulty trials, the optimal boundaries increase or stay constant. We also show how this simple model can be extended to more complex decision-making tasks such as when people have unequal priors or when they can choose to opt out of decisions. The theoretical model presented here provides an important framework to understand how, why, and whether decision boundaries should change over time in experiments on decision-making. |
format | Online Article Text |
id | pubmed-5990589 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-59905892018-06-19 Time-varying decision boundaries: insights from optimality analysis Malhotra, Gaurav Leslie, David S. Ludwig, Casimir J. H. Bogacz, Rafal Psychon Bull Rev Theoretical Review The most widely used account of decision-making proposes that people choose between alternatives by accumulating evidence in favor of each alternative until this evidence reaches a decision boundary. It is frequently assumed that this decision boundary stays constant during a decision, depending on the evidence collected but not on time. Recent experimental and theoretical work has challenged this assumption, showing that constant decision boundaries are, in some circumstances, sub-optimal. We introduce a theoretical model that facilitates identification of the optimal decision boundaries under a wide range of conditions. Time-varying optimal decision boundaries for our model are a result only of uncertainty over the difficulty of each trial and do not require decision deadlines or costs associated with collecting evidence, as assumed by previous authors. Furthermore, the shape of optimal decision boundaries depends on the difficulties of different decisions. When some trials are very difficult, optimal boundaries decrease with time, but for tasks that only include a mixture of easy and medium difficulty trials, the optimal boundaries increase or stay constant. We also show how this simple model can be extended to more complex decision-making tasks such as when people have unequal priors or when they can choose to opt out of decisions. The theoretical model presented here provides an important framework to understand how, why, and whether decision boundaries should change over time in experiments on decision-making. Springer US 2017-07-20 2018 /pmc/articles/PMC5990589/ /pubmed/28730465 http://dx.doi.org/10.3758/s13423-017-1340-6 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Theoretical Review Malhotra, Gaurav Leslie, David S. Ludwig, Casimir J. H. Bogacz, Rafal Time-varying decision boundaries: insights from optimality analysis |
title | Time-varying decision boundaries: insights from optimality analysis |
title_full | Time-varying decision boundaries: insights from optimality analysis |
title_fullStr | Time-varying decision boundaries: insights from optimality analysis |
title_full_unstemmed | Time-varying decision boundaries: insights from optimality analysis |
title_short | Time-varying decision boundaries: insights from optimality analysis |
title_sort | time-varying decision boundaries: insights from optimality analysis |
topic | Theoretical Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990589/ https://www.ncbi.nlm.nih.gov/pubmed/28730465 http://dx.doi.org/10.3758/s13423-017-1340-6 |
work_keys_str_mv | AT malhotragaurav timevaryingdecisionboundariesinsightsfromoptimalityanalysis AT lesliedavids timevaryingdecisionboundariesinsightsfromoptimalityanalysis AT ludwigcasimirjh timevaryingdecisionboundariesinsightsfromoptimalityanalysis AT bogaczrafal timevaryingdecisionboundariesinsightsfromoptimalityanalysis |