Cargando…
Utilization of steric hindrance of alkyl lithium-based initiator to synthesize high 1,4 unit-containing hydroxyl- terminated polybutadiene
A novel alkyl lithium-based initiator with relatively large steric hindrance, tert-butyldimethylsiloxydimethylpropyl lithium (TBDMSODPrLi), was designed and synthesized. By using TBDMSODPrLi, hydroxyl-terminated polybutadiene (HTPB) was prepared via anionic polymerization. The macromolecular structu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990791/ https://www.ncbi.nlm.nih.gov/pubmed/29892450 http://dx.doi.org/10.1098/rsos.180156 |
_version_ | 1783329649587126272 |
---|---|
author | Min, Xin Fan, Xiaodong Liu, Jie |
author_facet | Min, Xin Fan, Xiaodong Liu, Jie |
author_sort | Min, Xin |
collection | PubMed |
description | A novel alkyl lithium-based initiator with relatively large steric hindrance, tert-butyldimethylsiloxydimethylpropyl lithium (TBDMSODPrLi), was designed and synthesized. By using TBDMSODPrLi, hydroxyl-terminated polybutadiene (HTPB) was prepared via anionic polymerization. The macromolecular structure of HTPB was characterized and verified by FTIR and (1)H-NMR. It was found that 1,4 unit content in HTPB initiated by TBDMSODPrLi was significantly higher (over 90%) compared to a HTPB (1,4 unit content of 70%) initiated with another initiator possessing smaller steric hindrance. The possible mechanism, which was based on initiator steric hindrance affecting monomer chain addition behaviour, was deduced. It was that the initiator's larger steric hindrance blocked lithium's intermolecular association during anionic polymerization; as a result, it could effectively increase the 1,4 unit content in HTPB. To further study how to obtain higher and stable 1,4 unit content, the optimal anionic polymerization technique for HTPB was explored including polymerization temperature, time and the amount of initiator used. The study concluded that utilization of an initiator with larger steric hindrance and reducing the polymerization temperature were two important factors to raise the 1,4 unit content in HTPB. |
format | Online Article Text |
id | pubmed-5990791 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-59907912018-06-11 Utilization of steric hindrance of alkyl lithium-based initiator to synthesize high 1,4 unit-containing hydroxyl- terminated polybutadiene Min, Xin Fan, Xiaodong Liu, Jie R Soc Open Sci Chemistry A novel alkyl lithium-based initiator with relatively large steric hindrance, tert-butyldimethylsiloxydimethylpropyl lithium (TBDMSODPrLi), was designed and synthesized. By using TBDMSODPrLi, hydroxyl-terminated polybutadiene (HTPB) was prepared via anionic polymerization. The macromolecular structure of HTPB was characterized and verified by FTIR and (1)H-NMR. It was found that 1,4 unit content in HTPB initiated by TBDMSODPrLi was significantly higher (over 90%) compared to a HTPB (1,4 unit content of 70%) initiated with another initiator possessing smaller steric hindrance. The possible mechanism, which was based on initiator steric hindrance affecting monomer chain addition behaviour, was deduced. It was that the initiator's larger steric hindrance blocked lithium's intermolecular association during anionic polymerization; as a result, it could effectively increase the 1,4 unit content in HTPB. To further study how to obtain higher and stable 1,4 unit content, the optimal anionic polymerization technique for HTPB was explored including polymerization temperature, time and the amount of initiator used. The study concluded that utilization of an initiator with larger steric hindrance and reducing the polymerization temperature were two important factors to raise the 1,4 unit content in HTPB. The Royal Society Publishing 2018-05-30 /pmc/articles/PMC5990791/ /pubmed/29892450 http://dx.doi.org/10.1098/rsos.180156 Text en © 2018 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Chemistry Min, Xin Fan, Xiaodong Liu, Jie Utilization of steric hindrance of alkyl lithium-based initiator to synthesize high 1,4 unit-containing hydroxyl- terminated polybutadiene |
title | Utilization of steric hindrance of alkyl lithium-based initiator to synthesize high 1,4 unit-containing hydroxyl- terminated polybutadiene |
title_full | Utilization of steric hindrance of alkyl lithium-based initiator to synthesize high 1,4 unit-containing hydroxyl- terminated polybutadiene |
title_fullStr | Utilization of steric hindrance of alkyl lithium-based initiator to synthesize high 1,4 unit-containing hydroxyl- terminated polybutadiene |
title_full_unstemmed | Utilization of steric hindrance of alkyl lithium-based initiator to synthesize high 1,4 unit-containing hydroxyl- terminated polybutadiene |
title_short | Utilization of steric hindrance of alkyl lithium-based initiator to synthesize high 1,4 unit-containing hydroxyl- terminated polybutadiene |
title_sort | utilization of steric hindrance of alkyl lithium-based initiator to synthesize high 1,4 unit-containing hydroxyl- terminated polybutadiene |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990791/ https://www.ncbi.nlm.nih.gov/pubmed/29892450 http://dx.doi.org/10.1098/rsos.180156 |
work_keys_str_mv | AT minxin utilizationofsterichindranceofalkyllithiumbasedinitiatortosynthesizehigh14unitcontaininghydroxylterminatedpolybutadiene AT fanxiaodong utilizationofsterichindranceofalkyllithiumbasedinitiatortosynthesizehigh14unitcontaininghydroxylterminatedpolybutadiene AT liujie utilizationofsterichindranceofalkyllithiumbasedinitiatortosynthesizehigh14unitcontaininghydroxylterminatedpolybutadiene |