Cargando…
Improving the signal subtle feature extraction performance based on dual improved fractal box dimension eigenvectors
Because of the limitations of the traditional fractal box-counting dimension algorithm in subtle feature extraction of radiation source signals, a dual improved generalized fractal box-counting dimension eigenvector algorithm is proposed. First, the radiation source signal was preprocessed, and a Hi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990805/ https://www.ncbi.nlm.nih.gov/pubmed/29892447 http://dx.doi.org/10.1098/rsos.180087 |
Sumario: | Because of the limitations of the traditional fractal box-counting dimension algorithm in subtle feature extraction of radiation source signals, a dual improved generalized fractal box-counting dimension eigenvector algorithm is proposed. First, the radiation source signal was preprocessed, and a Hilbert transform was performed to obtain the instantaneous amplitude of the signal. Then, the improved fractal box-counting dimension of the signal instantaneous amplitude was extracted as the first eigenvector. At the same time, the improved fractal box-counting dimension of the signal without the Hilbert transform was extracted as the second eigenvector. Finally, the dual improved fractal box-counting dimension eigenvectors formed the multi-dimensional eigenvectors as signal subtle features, which were used for radiation source signal recognition by the grey relation algorithm. The experimental results show that, compared with the traditional fractal box-counting dimension algorithm and the single improved fractal box-counting dimension algorithm, the proposed dual improved fractal box-counting dimension algorithm can better extract the signal subtle distribution characteristics under different reconstruction phase space, and has a better recognition effect with good real-time performance. |
---|