Cargando…
Improving the signal subtle feature extraction performance based on dual improved fractal box dimension eigenvectors
Because of the limitations of the traditional fractal box-counting dimension algorithm in subtle feature extraction of radiation source signals, a dual improved generalized fractal box-counting dimension eigenvector algorithm is proposed. First, the radiation source signal was preprocessed, and a Hi...
Autores principales: | Chen, Xiang, Li, Jingchao, Han, Hui, Ying, Yulong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990805/ https://www.ncbi.nlm.nih.gov/pubmed/29892447 http://dx.doi.org/10.1098/rsos.180087 |
Ejemplares similares
-
An improved version of the eigenvector processor SAP applied in URMEL
por: Tückmantel, Joachim
Publicado: (1985) -
Improving the accuracy of computed eigenvalues and eigenvectors
por: Dongarra, J J, et al.
Publicado: (1981) -
Minimum Eigenvector Collaborative Representation Discriminant Projection for Feature Extraction
por: Hu, Haoshuang, et al.
Publicado: (2020) -
Box-covering algorithm for fractal dimension of weighted networks
por: Wei, Dai-Jun, et al.
Publicado: (2013) -
Modified box dimension and average weighted receiving time on the weighted fractal networks
por: Dai, Meifeng, et al.
Publicado: (2015)