Cargando…

The alternative prey hypothesis revisited: Still valid for willow ptarmigan population dynamics

The alternative prey hypothesis predicts that the interaction between generalist predators and their main prey is a major driver of population dynamics of alternative prey species. In Fennoscandia, changes in climate and human land use are assumed to alter the dynamics of cyclic small rodents (main...

Descripción completa

Detalles Bibliográficos
Autores principales: Breisjøberget, Jo Inge, Odden, Morten, Wegge, Per, Zimmermann, Barbara, Andreassen, Harry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991367/
https://www.ncbi.nlm.nih.gov/pubmed/29874270
http://dx.doi.org/10.1371/journal.pone.0197289
Descripción
Sumario:The alternative prey hypothesis predicts that the interaction between generalist predators and their main prey is a major driver of population dynamics of alternative prey species. In Fennoscandia, changes in climate and human land use are assumed to alter the dynamics of cyclic small rodents (main prey) and lead to increased densities and range expansion of an important generalist predator, the red fox Vulpes vulpes. In order to better understand the role of these potential changes in community structure on an alternative prey species, willow ptarmigan Lagopus lagopus, we analyzed nine years of population census data from SE Norway to investigate how community interactions affected their population dynamics. The ptarmigan populations showed no declining trend during the study period, and annual variations corresponded with marked periodic small rodent peaks and declines. Population growth and breeding success were highly correlated, and both demographic variables were influenced by an interaction between red fox and small rodents. Red foxes affected ptarmigan negatively only when small rodent abundance was low, which is in accordance with the alternative prey hypothesis. Our results confirm the important role of red fox predation in ptarmigan dynamics, and indicate that if small rodent cycles are disrupted, this may lead to decline in ptarmigan and other alternative prey species due to elevated predation pressure.