Cargando…
Prediction of daily PM(2.5) concentration in China using partial differential equations
Accurate reporting and forecasting of PM(2.5) concentration are important for improving public health. In this paper, we propose a partial differential equation (PDE) model, specially, a linear diffusive equation, to describe the spatial-temporal characteristics of PM(2.5) in order to make short-ter...
Autores principales: | Wang, Yufang, Wang, Haiyan, Chang, Shuhua, Avram, Adrian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991382/ https://www.ncbi.nlm.nih.gov/pubmed/29874245 http://dx.doi.org/10.1371/journal.pone.0197666 |
Ejemplares similares
-
Higher-order Network Analysis of Fine Particulate Matter (PM(2.5)) Transport in China at City Level
por: Wang, Yufang, et al.
Publicado: (2017) -
Tracking Daily Concentrations
of PM(2.5) Chemical
Composition in China since 2000
por: Liu, Shigan, et al.
Publicado: (2022) -
The concentration-response relation between PM(2.5) and daily deaths.
por: Schwartz, Joel, et al.
Publicado: (2002) -
An improved deep learning model for predicting daily PM2.5 concentration
por: Xiao, Fei, et al.
Publicado: (2020) -
Application of Bayesian Additive Regression Trees for Estimating Daily Concentrations of PM(2.5) Components
por: Zhang, Tianyu, et al.
Publicado: (2020)