Cargando…
The inverse relationship between blood amylase and insulin levels in pigs during development, bariatric surgery, and intravenous infusion of amylase
The purpose of this research is to explore the link between plasma amylase and insulin levels in growing pigs. Blood was obtained from piglets ranging in age from preterm (8 days to full gestation period), up to postnatal day 90 (2 months post-weaning) that underwent either duodenal-jejunal bariatri...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991419/ https://www.ncbi.nlm.nih.gov/pubmed/29874296 http://dx.doi.org/10.1371/journal.pone.0198672 |
Sumario: | The purpose of this research is to explore the link between plasma amylase and insulin levels in growing pigs. Blood was obtained from piglets ranging in age from preterm (8 days to full gestation period), up to postnatal day 90 (2 months post-weaning) that underwent either duodenal-jejunal bariatric interposition surgery or a sham-operation. Plasma amylase activities in preterm and full-term neonates ranged between 500–600 U/L and were decreased by 50% two months post-weaning. Preprandial insulin and C-peptide levels in neonate piglets were not detectable, however they rose gradually after weaning. An increase in plasma amylase activity was observed in the young pigs that underwent duodenal-jejunum bypass (metabolic) surgery. The increase in blood pancreatic amylase activity after an intravenous amylase infusion lowered the subsequent glucose-stimulated insulin/C-peptide release. We suggest a role for blood amylase in the regulation of glucose homeostasis after observing high blood amylase levels in neonate pigs, in pigs that underwent metabolic surgery, and as a result of the reduced glucose-stimulated insulin response following intravenous amylase administration. Blood amylase level is a dynamic physiological parameter, which is not merely a consequence of exocrine pancreatic digestive enzyme production, but rather a regulated factor involved in glucose assimilation and prandial insulin regulation. |
---|