Cargando…
Clustering multilayer omics data using MuNCut
BACKGROUND: Omics profiling is now a routine component of biomedical studies. In the analysis of omics data, clustering is an essential step and serves multiple purposes including for example revealing the unknown functionalities of omics units, assisting dimension reduction in outcome model buildin...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991460/ https://www.ncbi.nlm.nih.gov/pubmed/29703159 http://dx.doi.org/10.1186/s12864-018-4580-6 |
_version_ | 1783329833912107008 |
---|---|
author | Teran Hidalgo, Sebastian J. Ma, Shuangge |
author_facet | Teran Hidalgo, Sebastian J. Ma, Shuangge |
author_sort | Teran Hidalgo, Sebastian J. |
collection | PubMed |
description | BACKGROUND: Omics profiling is now a routine component of biomedical studies. In the analysis of omics data, clustering is an essential step and serves multiple purposes including for example revealing the unknown functionalities of omics units, assisting dimension reduction in outcome model building, and others. In the most recent omics studies, a prominent trend is to conduct multilayer profiling, which collects multiple types of genetic, genomic, epigenetic and other measurements on the same subjects. In the literature, clustering methods tailored to multilayer omics data are still limited. Directly applying the existing clustering methods to multilayer omics data and clustering each layer first and then combing across layers are both “suboptimal” in that they do not accommodate the interconnections within layers and across layers in an informative way. METHODS: In this study, we develop the MuNCut (Multilayer NCut) clustering approach. It is tailored to multilayer omics data and sufficiently accounts for both across- and within-layer connections. It is based on the novel NCut technique and also takes advantages of regularized sparse estimation. It has an intuitive formulation and is computationally very feasible. To facilitate implementation, we develop the function muncut in the R package NcutYX. RESULTS: Under a wide spectrum of simulation settings, it outperforms competitors. The analysis of TCGA (The Cancer Genome Atlas) data on breast cancer and cervical cancer shows that MuNCut generates biologically meaningful results which differ from those using the alternatives. CONCLUSIONS: We propose a more effective clustering analysis of multiple omics data. It provides a new venue for jointly analyzing genetic, genomic, epigenetic and other measurements. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-018-4580-6) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5991460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-59914602018-06-21 Clustering multilayer omics data using MuNCut Teran Hidalgo, Sebastian J. Ma, Shuangge BMC Genomics Methodology Article BACKGROUND: Omics profiling is now a routine component of biomedical studies. In the analysis of omics data, clustering is an essential step and serves multiple purposes including for example revealing the unknown functionalities of omics units, assisting dimension reduction in outcome model building, and others. In the most recent omics studies, a prominent trend is to conduct multilayer profiling, which collects multiple types of genetic, genomic, epigenetic and other measurements on the same subjects. In the literature, clustering methods tailored to multilayer omics data are still limited. Directly applying the existing clustering methods to multilayer omics data and clustering each layer first and then combing across layers are both “suboptimal” in that they do not accommodate the interconnections within layers and across layers in an informative way. METHODS: In this study, we develop the MuNCut (Multilayer NCut) clustering approach. It is tailored to multilayer omics data and sufficiently accounts for both across- and within-layer connections. It is based on the novel NCut technique and also takes advantages of regularized sparse estimation. It has an intuitive formulation and is computationally very feasible. To facilitate implementation, we develop the function muncut in the R package NcutYX. RESULTS: Under a wide spectrum of simulation settings, it outperforms competitors. The analysis of TCGA (The Cancer Genome Atlas) data on breast cancer and cervical cancer shows that MuNCut generates biologically meaningful results which differ from those using the alternatives. CONCLUSIONS: We propose a more effective clustering analysis of multiple omics data. It provides a new venue for jointly analyzing genetic, genomic, epigenetic and other measurements. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-018-4580-6) contains supplementary material, which is available to authorized users. BioMed Central 2018-03-14 /pmc/articles/PMC5991460/ /pubmed/29703159 http://dx.doi.org/10.1186/s12864-018-4580-6 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Methodology Article Teran Hidalgo, Sebastian J. Ma, Shuangge Clustering multilayer omics data using MuNCut |
title | Clustering multilayer omics data using MuNCut |
title_full | Clustering multilayer omics data using MuNCut |
title_fullStr | Clustering multilayer omics data using MuNCut |
title_full_unstemmed | Clustering multilayer omics data using MuNCut |
title_short | Clustering multilayer omics data using MuNCut |
title_sort | clustering multilayer omics data using muncut |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991460/ https://www.ncbi.nlm.nih.gov/pubmed/29703159 http://dx.doi.org/10.1186/s12864-018-4580-6 |
work_keys_str_mv | AT teranhidalgosebastianj clusteringmultilayeromicsdatausingmuncut AT mashuangge clusteringmultilayeromicsdatausingmuncut |