Cargando…
Proteomic response of hybrid wild rice to cold stress at the seedling stage
Low temperature at the seedling stage is a major damaging factor for rice production in southern China. To better understand the cold response of cultivated and wild rice, cold-sensitive cultivar 93–11 (Oryza sativa L. ssp. Indica) and cold-resistant hybrid wild rice DC907 with a 93–11 genetic backg...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991693/ https://www.ncbi.nlm.nih.gov/pubmed/29879216 http://dx.doi.org/10.1371/journal.pone.0198675 |
Sumario: | Low temperature at the seedling stage is a major damaging factor for rice production in southern China. To better understand the cold response of cultivated and wild rice, cold-sensitive cultivar 93–11 (Oryza sativa L. ssp. Indica) and cold-resistant hybrid wild rice DC907 with a 93–11 genetic background were used for a quantitative proteomic analysis with tandem mass tags (TMT) in parallel. Rice seedlings grown for four weeks at a normal temperature (25°C) were treated at 8–10°C for 24, 72 and 120 h. The number of differentially expressed proteins increased gradually over time in the cold-exposed rice in comparison with the untreated rice. A total of 366 unique proteins involved in ATP synthesis, photosystem, reactive oxygen species, stress response, cell growth and integrity were identified as responding to cold stress in DC907. While both DC907 and 93–11 underwent similar alterations in proteomic profiles in response to cold stress, DC907 responded in a prompter manner in terms of expressing cold-responding proteins, maintained a higher level of photosynthesis to power the cells, and possessed a stable and higher level of DIR proteins to prevent the plant from obtaining irreversible cell structure damage. The observations made in this study may lay a new foundation for further investigation of cold sensitivity or tolerance mechanisms in rice. |
---|