Cargando…
Predictive modeling of treatment resistant depression using data from STAR*D and an independent clinical study
Identification of risk factors of treatment resistance may be useful to guide treatment selection, avoid inefficient trial-and-error, and improve major depressive disorder (MDD) care. We extended the work in predictive modeling of treatment resistant depression (TRD) via partition of the data from t...
Autores principales: | Nie, Zhi, Vairavan, Srinivasan, Narayan, Vaibhav A., Ye, Jieping, Li, Qingqin S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991746/ https://www.ncbi.nlm.nih.gov/pubmed/29879133 http://dx.doi.org/10.1371/journal.pone.0197268 |
Ejemplares similares
-
Personalized relapse prediction in patients with major depressive disorder using digital biomarkers
por: Vairavan, Srinivasan, et al.
Publicado: (2023) -
Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data
por: Ye, Jieping, et al.
Publicado: (2012) -
Metabolomic biosignature differentiates melancholic depressive patients from healthy controls
por: Liu, Yashu, et al.
Publicado: (2016) -
Humanistic outcomes in treatment resistant depression: a secondary analysis of the STAR*D study
por: DiBernardo, Allitia, et al.
Publicado: (2018) -
What are the stars?
por: Srinivasan, Ganesan
Publicado: (2014)