Cargando…
Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review
PURPOSE: To compile a list of genes that have been reported to be affected by external ionizing radiation (IR) and to assess their performance as candidate biomarkers for individual human radiation dosimetry. METHODS: Eligible studies were identified through extensive searches of the online database...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991767/ https://www.ncbi.nlm.nih.gov/pubmed/29879226 http://dx.doi.org/10.1371/journal.pone.0198851 |
_version_ | 1783329900939182080 |
---|---|
author | Lacombe, Jerome Sima, Chao Amundson, Sally A. Zenhausern, Frederic |
author_facet | Lacombe, Jerome Sima, Chao Amundson, Sally A. Zenhausern, Frederic |
author_sort | Lacombe, Jerome |
collection | PubMed |
description | PURPOSE: To compile a list of genes that have been reported to be affected by external ionizing radiation (IR) and to assess their performance as candidate biomarkers for individual human radiation dosimetry. METHODS: Eligible studies were identified through extensive searches of the online databases from 1978 to 2017. Original English-language publications of microarray studies assessing radiation-induced changes in gene expression levels in human blood after external IR were included. Genes identified in at least half of the selected studies were retained for bio-statistical analysis in order to evaluate their diagnostic ability. RESULTS: 24 studies met the criteria and were included in this study. Radiation-induced expression of 10,170 unique genes was identified and the 31 genes that have been identified in at least 50% of studies (12/24 studies) were selected for diagnostic power analysis. Twenty-seven genes showed a significant Spearman’s correlation with radiation dose. Individually, TNFSF4, FDXR, MYC, ZMAT3 and GADD45A provided the best discrimination of radiation dose < 2 Gy and dose ≥ 2 Gy according to according to their maximized Youden’s index (0.67, 0.55, 0.55, 0.55 and 0.53 respectively). Moreover, 12 combinations of three genes display an area under the Receiver Operating Curve (ROC) curve (AUC) = 1 reinforcing the concept of biomarker combinations instead of looking for an ideal and unique biomarker. CONCLUSION: Gene expression is a promising approach for radiation dosimetry assessment. A list of robust candidate biomarkers has been identified from analysis of the studies published to date, confirming for example the potential of well-known genes such as FDXR and TNFSF4 or highlighting other promising gene such as ZMAT3. However, heterogeneity in protocols and analysis methods will require additional studies to confirm these results. |
format | Online Article Text |
id | pubmed-5991767 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-59917672018-06-15 Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review Lacombe, Jerome Sima, Chao Amundson, Sally A. Zenhausern, Frederic PLoS One Research Article PURPOSE: To compile a list of genes that have been reported to be affected by external ionizing radiation (IR) and to assess their performance as candidate biomarkers for individual human radiation dosimetry. METHODS: Eligible studies were identified through extensive searches of the online databases from 1978 to 2017. Original English-language publications of microarray studies assessing radiation-induced changes in gene expression levels in human blood after external IR were included. Genes identified in at least half of the selected studies were retained for bio-statistical analysis in order to evaluate their diagnostic ability. RESULTS: 24 studies met the criteria and were included in this study. Radiation-induced expression of 10,170 unique genes was identified and the 31 genes that have been identified in at least 50% of studies (12/24 studies) were selected for diagnostic power analysis. Twenty-seven genes showed a significant Spearman’s correlation with radiation dose. Individually, TNFSF4, FDXR, MYC, ZMAT3 and GADD45A provided the best discrimination of radiation dose < 2 Gy and dose ≥ 2 Gy according to according to their maximized Youden’s index (0.67, 0.55, 0.55, 0.55 and 0.53 respectively). Moreover, 12 combinations of three genes display an area under the Receiver Operating Curve (ROC) curve (AUC) = 1 reinforcing the concept of biomarker combinations instead of looking for an ideal and unique biomarker. CONCLUSION: Gene expression is a promising approach for radiation dosimetry assessment. A list of robust candidate biomarkers has been identified from analysis of the studies published to date, confirming for example the potential of well-known genes such as FDXR and TNFSF4 or highlighting other promising gene such as ZMAT3. However, heterogeneity in protocols and analysis methods will require additional studies to confirm these results. Public Library of Science 2018-06-07 /pmc/articles/PMC5991767/ /pubmed/29879226 http://dx.doi.org/10.1371/journal.pone.0198851 Text en © 2018 Lacombe et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Lacombe, Jerome Sima, Chao Amundson, Sally A. Zenhausern, Frederic Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review |
title | Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review |
title_full | Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review |
title_fullStr | Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review |
title_full_unstemmed | Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review |
title_short | Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review |
title_sort | candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: a systematic review |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991767/ https://www.ncbi.nlm.nih.gov/pubmed/29879226 http://dx.doi.org/10.1371/journal.pone.0198851 |
work_keys_str_mv | AT lacombejerome candidategenebiodosimetrymarkersofexposuretoexternalionizingradiationinhumanbloodasystematicreview AT simachao candidategenebiodosimetrymarkersofexposuretoexternalionizingradiationinhumanbloodasystematicreview AT amundsonsallya candidategenebiodosimetrymarkersofexposuretoexternalionizingradiationinhumanbloodasystematicreview AT zenhausernfrederic candidategenebiodosimetrymarkersofexposuretoexternalionizingradiationinhumanbloodasystematicreview |