Cargando…

Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints

Cell growth and survival depend on a delicate balance between energy production and synthesis of metabolites. Here, we provide evidence that an alternative mitochondrial complex II (CII) assembly, designated as CII(low), serves as a checkpoint for metabolite biosynthesis under bioenergetic stress, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Bezawork-Geleta, Ayenachew, Wen, He, Dong, LanFeng, Yan, Bing, Vider, Jelena, Boukalova, Stepana, Krobova, Linda, Vanova, Katerina, Zobalova, Renata, Sobol, Margarita, Hozak, Pavel, Novais, Silvia Magalhaes, Caisova, Veronika, Abaffy, Pavel, Naraine, Ravindra, Pang, Ying, Zaw, Thiri, Zhang, Ping, Sindelka, Radek, Kubista, Mikael, Zuryn, Steven, Molloy, Mark P., Berridge, Michael V., Pacak, Karel, Rohlena, Jakub, Park, Sunghyouk, Neuzil, Jiri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992162/
https://www.ncbi.nlm.nih.gov/pubmed/29880867
http://dx.doi.org/10.1038/s41467-018-04603-z
_version_ 1783329958682165248
author Bezawork-Geleta, Ayenachew
Wen, He
Dong, LanFeng
Yan, Bing
Vider, Jelena
Boukalova, Stepana
Krobova, Linda
Vanova, Katerina
Zobalova, Renata
Sobol, Margarita
Hozak, Pavel
Novais, Silvia Magalhaes
Caisova, Veronika
Abaffy, Pavel
Naraine, Ravindra
Pang, Ying
Zaw, Thiri
Zhang, Ping
Sindelka, Radek
Kubista, Mikael
Zuryn, Steven
Molloy, Mark P.
Berridge, Michael V.
Pacak, Karel
Rohlena, Jakub
Park, Sunghyouk
Neuzil, Jiri
author_facet Bezawork-Geleta, Ayenachew
Wen, He
Dong, LanFeng
Yan, Bing
Vider, Jelena
Boukalova, Stepana
Krobova, Linda
Vanova, Katerina
Zobalova, Renata
Sobol, Margarita
Hozak, Pavel
Novais, Silvia Magalhaes
Caisova, Veronika
Abaffy, Pavel
Naraine, Ravindra
Pang, Ying
Zaw, Thiri
Zhang, Ping
Sindelka, Radek
Kubista, Mikael
Zuryn, Steven
Molloy, Mark P.
Berridge, Michael V.
Pacak, Karel
Rohlena, Jakub
Park, Sunghyouk
Neuzil, Jiri
author_sort Bezawork-Geleta, Ayenachew
collection PubMed
description Cell growth and survival depend on a delicate balance between energy production and synthesis of metabolites. Here, we provide evidence that an alternative mitochondrial complex II (CII) assembly, designated as CII(low), serves as a checkpoint for metabolite biosynthesis under bioenergetic stress, with cells suppressing their energy utilization by modulating DNA synthesis and cell cycle progression. Depletion of CII(low) leads to an imbalance in energy utilization and metabolite synthesis, as evidenced by recovery of the de novo pyrimidine pathway and unlocking cell cycle arrest from the S-phase. In vitro experiments are further corroborated by analysis of paraganglioma tissues from patients with sporadic, SDHA and SDHB mutations. These findings suggest that CII(low) is a core complex inside mitochondria that provides homeostatic control of cellular metabolism depending on the availability of energy.
format Online
Article
Text
id pubmed-5992162
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-59921622018-06-11 Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints Bezawork-Geleta, Ayenachew Wen, He Dong, LanFeng Yan, Bing Vider, Jelena Boukalova, Stepana Krobova, Linda Vanova, Katerina Zobalova, Renata Sobol, Margarita Hozak, Pavel Novais, Silvia Magalhaes Caisova, Veronika Abaffy, Pavel Naraine, Ravindra Pang, Ying Zaw, Thiri Zhang, Ping Sindelka, Radek Kubista, Mikael Zuryn, Steven Molloy, Mark P. Berridge, Michael V. Pacak, Karel Rohlena, Jakub Park, Sunghyouk Neuzil, Jiri Nat Commun Article Cell growth and survival depend on a delicate balance between energy production and synthesis of metabolites. Here, we provide evidence that an alternative mitochondrial complex II (CII) assembly, designated as CII(low), serves as a checkpoint for metabolite biosynthesis under bioenergetic stress, with cells suppressing their energy utilization by modulating DNA synthesis and cell cycle progression. Depletion of CII(low) leads to an imbalance in energy utilization and metabolite synthesis, as evidenced by recovery of the de novo pyrimidine pathway and unlocking cell cycle arrest from the S-phase. In vitro experiments are further corroborated by analysis of paraganglioma tissues from patients with sporadic, SDHA and SDHB mutations. These findings suggest that CII(low) is a core complex inside mitochondria that provides homeostatic control of cellular metabolism depending on the availability of energy. Nature Publishing Group UK 2018-06-07 /pmc/articles/PMC5992162/ /pubmed/29880867 http://dx.doi.org/10.1038/s41467-018-04603-z Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Bezawork-Geleta, Ayenachew
Wen, He
Dong, LanFeng
Yan, Bing
Vider, Jelena
Boukalova, Stepana
Krobova, Linda
Vanova, Katerina
Zobalova, Renata
Sobol, Margarita
Hozak, Pavel
Novais, Silvia Magalhaes
Caisova, Veronika
Abaffy, Pavel
Naraine, Ravindra
Pang, Ying
Zaw, Thiri
Zhang, Ping
Sindelka, Radek
Kubista, Mikael
Zuryn, Steven
Molloy, Mark P.
Berridge, Michael V.
Pacak, Karel
Rohlena, Jakub
Park, Sunghyouk
Neuzil, Jiri
Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints
title Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints
title_full Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints
title_fullStr Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints
title_full_unstemmed Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints
title_short Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints
title_sort alternative assembly of respiratory complex ii connects energy stress to metabolic checkpoints
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992162/
https://www.ncbi.nlm.nih.gov/pubmed/29880867
http://dx.doi.org/10.1038/s41467-018-04603-z
work_keys_str_mv AT bezaworkgeletaayenachew alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT wenhe alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT donglanfeng alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT yanbing alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT viderjelena alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT boukalovastepana alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT krobovalinda alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT vanovakaterina alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT zobalovarenata alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT sobolmargarita alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT hozakpavel alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT novaissilviamagalhaes alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT caisovaveronika alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT abaffypavel alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT naraineravindra alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT pangying alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT zawthiri alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT zhangping alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT sindelkaradek alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT kubistamikael alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT zurynsteven alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT molloymarkp alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT berridgemichaelv alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT pacakkarel alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT rohlenajakub alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT parksunghyouk alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints
AT neuziljiri alternativeassemblyofrespiratorycomplexiiconnectsenergystresstometaboliccheckpoints