Cargando…
Radiologists can detect the ‘gist’ of breast cancer before any overt signs of cancer appear
Radiologists can detect abnormality in mammograms at above-chance levels after a momentary glimpse of an image. The study investigated this instantaneous perception of an abnormality, known as a “gist” response, when 23 radiologists viewed prior mammograms of women that were reported as normal, but...
Autores principales: | Brennan, Patrick C., Gandomkar, Ziba, Ekpo, Ernest U., Tapia, Kriscia, Trieu, Phuong D., Lewis, Sarah J., Wolfe, Jeremy M., Evans, Karla K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992208/ https://www.ncbi.nlm.nih.gov/pubmed/29880817 http://dx.doi.org/10.1038/s41598-018-26100-5 |
Ejemplares similares
-
Reliability of radiologists’ first impression when interpreting a screening mammogram
por: Gandomkar, Ziba, et al.
Publicado: (2023) -
A machine learning model based on readers’ characteristics to predict their performances in reading screening mammograms
por: Gandomkar, Ziba, et al.
Publicado: (2022) -
Determining Image Processing Features Describing the Appearance of Challenging Mitotic Figures and Miscounted Nonmitotic Objects
por: Gandomkar, Ziba, et al.
Publicado: (2017) -
Using Occlusion-Based Saliency Maps to Explain an Artificial Intelligence Tool in Lung Cancer Screening: Agreement Between Radiologists, Labels, and Visual Prompts
por: Gandomkar, Ziba, et al.
Publicado: (2022) -
Global processing provides malignancy evidence complementary to the information captured by humans or machines following detailed mammogram inspection
por: Gandomkar, Ziba, et al.
Publicado: (2021)