Cargando…
Maximising the resolving power of the scanning tunneling microscope
The usual way to present images from a scanning tunneling microscope (STM) is to take multiple images of the same area, to then manually select the one that appears to be of the highest quality, and then to discard the other almost identical images. This is in contrast to most other disciplines wher...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992247/ https://www.ncbi.nlm.nih.gov/pubmed/29930895 http://dx.doi.org/10.1186/s40679-018-0056-7 |
_version_ | 1783329980689678336 |
---|---|
author | Jones, Lewys Wang, Shuqiu Hu, Xiao ur Rahman, Shams Castell, Martin R. |
author_facet | Jones, Lewys Wang, Shuqiu Hu, Xiao ur Rahman, Shams Castell, Martin R. |
author_sort | Jones, Lewys |
collection | PubMed |
description | The usual way to present images from a scanning tunneling microscope (STM) is to take multiple images of the same area, to then manually select the one that appears to be of the highest quality, and then to discard the other almost identical images. This is in contrast to most other disciplines where the signal to noise ratio (SNR) of a data set is improved by taking repeated measurements and averaging them. Data averaging can be routinely performed for 1D spectra, where their alignment is straightforward. However, for serial-acquired 2D STM images the nature and variety of image distortions can severely complicate accurate registration. Here, we demonstrate how a significant improvement in the resolving power of the STM can be achieved through automated distortion correction and multi-frame averaging (MFA) and we demonstrate the broad utility of this approach with three examples. First, we show a sixfold enhancement of the SNR of the Si(111)-(7 × 7) reconstruction. Next, we demonstrate that images with sub-picometre height precision can be routinely obtained and show this for a monolayer of Ti(2)O(3) on Au(111). Last, we demonstrate the automated classification of the two chiral variants of the surface unit cells of the (4 × 4) reconstructed SrTiO(3)(111) surface. Our new approach to STM imaging will allow a wealth of structural and electronic information from surfaces to be extracted that was previously buried in noise. |
format | Online Article Text |
id | pubmed-5992247 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-59922472018-06-19 Maximising the resolving power of the scanning tunneling microscope Jones, Lewys Wang, Shuqiu Hu, Xiao ur Rahman, Shams Castell, Martin R. Adv Struct Chem Imaging Research The usual way to present images from a scanning tunneling microscope (STM) is to take multiple images of the same area, to then manually select the one that appears to be of the highest quality, and then to discard the other almost identical images. This is in contrast to most other disciplines where the signal to noise ratio (SNR) of a data set is improved by taking repeated measurements and averaging them. Data averaging can be routinely performed for 1D spectra, where their alignment is straightforward. However, for serial-acquired 2D STM images the nature and variety of image distortions can severely complicate accurate registration. Here, we demonstrate how a significant improvement in the resolving power of the STM can be achieved through automated distortion correction and multi-frame averaging (MFA) and we demonstrate the broad utility of this approach with three examples. First, we show a sixfold enhancement of the SNR of the Si(111)-(7 × 7) reconstruction. Next, we demonstrate that images with sub-picometre height precision can be routinely obtained and show this for a monolayer of Ti(2)O(3) on Au(111). Last, we demonstrate the automated classification of the two chiral variants of the surface unit cells of the (4 × 4) reconstructed SrTiO(3)(111) surface. Our new approach to STM imaging will allow a wealth of structural and electronic information from surfaces to be extracted that was previously buried in noise. Springer International Publishing 2018-06-07 2018 /pmc/articles/PMC5992247/ /pubmed/29930895 http://dx.doi.org/10.1186/s40679-018-0056-7 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Jones, Lewys Wang, Shuqiu Hu, Xiao ur Rahman, Shams Castell, Martin R. Maximising the resolving power of the scanning tunneling microscope |
title | Maximising the resolving power of the scanning tunneling microscope |
title_full | Maximising the resolving power of the scanning tunneling microscope |
title_fullStr | Maximising the resolving power of the scanning tunneling microscope |
title_full_unstemmed | Maximising the resolving power of the scanning tunneling microscope |
title_short | Maximising the resolving power of the scanning tunneling microscope |
title_sort | maximising the resolving power of the scanning tunneling microscope |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992247/ https://www.ncbi.nlm.nih.gov/pubmed/29930895 http://dx.doi.org/10.1186/s40679-018-0056-7 |
work_keys_str_mv | AT joneslewys maximisingtheresolvingpowerofthescanningtunnelingmicroscope AT wangshuqiu maximisingtheresolvingpowerofthescanningtunnelingmicroscope AT huxiao maximisingtheresolvingpowerofthescanningtunnelingmicroscope AT urrahmanshams maximisingtheresolvingpowerofthescanningtunnelingmicroscope AT castellmartinr maximisingtheresolvingpowerofthescanningtunnelingmicroscope |