Cargando…
Nonmuscle myosin IIA is involved in recruitment of apical junction components through activation of α-catenin
MDCK dog kidney epithelial cells express two isoforms of nonmuscle myosin heavy chain II, IIA and IIB. Using the CRISPR/Cas9 system, we established cells in which the IIA gene was ablated. These cells were then transfected with a vector that expresses GFP–IIA chimeric molecule under the control of a...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992523/ https://www.ncbi.nlm.nih.gov/pubmed/29654115 http://dx.doi.org/10.1242/bio.031369 |
_version_ | 1783330047552126976 |
---|---|
author | Ozawa, Masayuki |
author_facet | Ozawa, Masayuki |
author_sort | Ozawa, Masayuki |
collection | PubMed |
description | MDCK dog kidney epithelial cells express two isoforms of nonmuscle myosin heavy chain II, IIA and IIB. Using the CRISPR/Cas9 system, we established cells in which the IIA gene was ablated. These cells were then transfected with a vector that expresses GFP–IIA chimeric molecule under the control of a tetracycline-responsible element. In the absence of Dox (doxycyclin), when GFP–IIA is expressed (GFP–IIA+), the cells exhibit epithelial cell morphology, but in the presence of Dox, when expression of GFP–IIA is repressed (GFP–IIA−), the cells lose epithelial morphology and strong cell–cell adhesion. Consistent with these observations, GFP–IIA− cells failed to assemble junction components such as E-cadherin, desmoplakin, and occludin at cell–cell contact sites. Therefore, IIA is required for assembly of junction complexes. MDCK cells with an ablation of the α-catenin gene also exhibited the same phenotype. However, when in GFP–IIA− cells expressed α-catenin lacking the inhibitory region or E-cadherin/α-catenin chimeras, the cells acquired the ability to establish the junction complex. These experiments reveal that IIA acts as an activator of α-catenin in junction assembly. |
format | Online Article Text |
id | pubmed-5992523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-59925232018-06-08 Nonmuscle myosin IIA is involved in recruitment of apical junction components through activation of α-catenin Ozawa, Masayuki Biol Open Research Article MDCK dog kidney epithelial cells express two isoforms of nonmuscle myosin heavy chain II, IIA and IIB. Using the CRISPR/Cas9 system, we established cells in which the IIA gene was ablated. These cells were then transfected with a vector that expresses GFP–IIA chimeric molecule under the control of a tetracycline-responsible element. In the absence of Dox (doxycyclin), when GFP–IIA is expressed (GFP–IIA+), the cells exhibit epithelial cell morphology, but in the presence of Dox, when expression of GFP–IIA is repressed (GFP–IIA−), the cells lose epithelial morphology and strong cell–cell adhesion. Consistent with these observations, GFP–IIA− cells failed to assemble junction components such as E-cadherin, desmoplakin, and occludin at cell–cell contact sites. Therefore, IIA is required for assembly of junction complexes. MDCK cells with an ablation of the α-catenin gene also exhibited the same phenotype. However, when in GFP–IIA− cells expressed α-catenin lacking the inhibitory region or E-cadherin/α-catenin chimeras, the cells acquired the ability to establish the junction complex. These experiments reveal that IIA acts as an activator of α-catenin in junction assembly. The Company of Biologists Ltd 2018-04-13 /pmc/articles/PMC5992523/ /pubmed/29654115 http://dx.doi.org/10.1242/bio.031369 Text en © 2018. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Article Ozawa, Masayuki Nonmuscle myosin IIA is involved in recruitment of apical junction components through activation of α-catenin |
title | Nonmuscle myosin IIA is involved in recruitment of apical junction components through activation of α-catenin |
title_full | Nonmuscle myosin IIA is involved in recruitment of apical junction components through activation of α-catenin |
title_fullStr | Nonmuscle myosin IIA is involved in recruitment of apical junction components through activation of α-catenin |
title_full_unstemmed | Nonmuscle myosin IIA is involved in recruitment of apical junction components through activation of α-catenin |
title_short | Nonmuscle myosin IIA is involved in recruitment of apical junction components through activation of α-catenin |
title_sort | nonmuscle myosin iia is involved in recruitment of apical junction components through activation of α-catenin |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992523/ https://www.ncbi.nlm.nih.gov/pubmed/29654115 http://dx.doi.org/10.1242/bio.031369 |
work_keys_str_mv | AT ozawamasayuki nonmusclemyosiniiaisinvolvedinrecruitmentofapicaljunctioncomponentsthroughactivationofacatenin |