Cargando…
Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach
BACKGROUND: One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing m...
Autores principales: | Tranchevent, Léon-Charles, Nazarov, Petr V., Kaoma, Tony, Schmartz, Georges P., Muller, Arnaud, Kim, Sang-Yoon, Rajapakse, Jagath C., Azuaje, Francisco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992838/ https://www.ncbi.nlm.nih.gov/pubmed/29880025 http://dx.doi.org/10.1186/s13062-018-0214-9 |
Ejemplares similares
-
A deep neural network approach to predicting clinical outcomes of neuroblastoma patients
por: Tranchevent, Léon-Charles, et al.
Publicado: (2019) -
Hub genes in a pan-cancer co-expression network show potential for predicting drug responses
por: Azuaje, Francisco, et al.
Publicado: (2019) -
Analysis of correlation-based biomolecular networks from different omics data by fitting stochastic block models
por: Baum, Katharina, et al.
Publicado: (2019) -
Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma
por: Wang, Conghao, et al.
Publicado: (2022) -
Prognostic transcriptional association networks: a new supervised approach based on regression trees
por: Nepomuceno-Chamorro, Isabel, et al.
Publicado: (2011)