Cargando…
Biological meaning of “habitable zone” in nucleotide composition space
Organisms generally display two contrasting properties: large biodiversity and a uniform state of “life”. In this study, we focused on the question of how genome sequences describe “life” where a large number of biomolecules are harmonized. We analyzed the whole genome sequence of 2664 organisms, pa...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Biophysical Society of Japan (BSJ)
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992858/ https://www.ncbi.nlm.nih.gov/pubmed/29892513 http://dx.doi.org/10.2142/biophysico.15.0_75 |
Sumario: | Organisms generally display two contrasting properties: large biodiversity and a uniform state of “life”. In this study, we focused on the question of how genome sequences describe “life” where a large number of biomolecules are harmonized. We analyzed the whole genome sequence of 2664 organisms, paying attention to the nucleotide composition which is an intensive parameter from the genome sequence. The results showed that all organisms were plotted in narrow regions of the nucleotide composition space of the first and second letters of the codon. Since all genome sequences overlap irrespective of the living environment, it can be called a “habitable zone”. The habitable zone deviates by 500 times the standard deviation from the nucleotide composition expected from the random sequence, indicating that unexpectedly rare sequences are realized. Furthermore, we found that the habitable zones at the first and second letters of the codon serve as the background mechanisms for the functional network of biological systems. The habitable zone at the second letter of the codon controls the formation of transmembrane regions and the habitable zone at the first letter controls the formation of molecular recognition unit. These analyses showed that the habitable zone of the nucleotide composition space and the exquisite arrangement of amino acids in the codon table are conjugated to form biological systems. Finally, we discussed the evolution of the higher order of genome sequences. |
---|