Cargando…
Data and Supplemental information for predicting the thermodynamic stability of perovskite oxides using machine learning models
To better present the machine learning work and the data used, we prepared a supplemental spreadsheet to organize the full training dataset prepared from DFT calculations, the individual elemental properties, the generated element-based descriptors derived from the elements present in each perovskit...
Autores principales: | Li, Wei, Jacobs, Ryan, Morgan, Dane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992996/ https://www.ncbi.nlm.nih.gov/pubmed/29892644 http://dx.doi.org/10.1016/j.dib.2018.05.007 |
Ejemplares similares
-
Thermodynamic data of phenol adsorption on chemically modified activated carbons
por: Giraldo, Liliana, et al.
Publicado: (2020) -
Influence of voids on the thermal and light stability of perovskite solar cells
por: Wang, Mengru, et al.
Publicado: (2022) -
Data to reproduce and modify “An approach for screening single phase high-entropy alloys using an in-house thermodynamic database”
por: Tapia, Antonio João Seco Ferreira, et al.
Publicado: (2018) -
Stacking fault energy prediction for austenitic steels: thermodynamic modeling vs. machine learning
por: Wang, Xin, et al.
Publicado: (2020) -
The Ag–Li system's experimental and ab initio thermodynamic dataset
por: Braga, M. Helena, et al.
Publicado: (2019)