Cargando…
Drought Persistence Errors in Global Climate Models
The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assesse...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993269/ https://www.ncbi.nlm.nih.gov/pubmed/29938145 http://dx.doi.org/10.1002/2017JD027577 |
_version_ | 1783330213356109824 |
---|---|
author | Moon, H. Gudmundsson, L. Seneviratne, S. I. |
author_facet | Moon, H. Gudmundsson, L. Seneviratne, S. I. |
author_sort | Moon, H. |
collection | PubMed |
description | The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state‐of‐the‐art GCM model simulations to observation‐based data sets. For doing so, we consider dry‐to‐dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement. |
format | Online Article Text |
id | pubmed-5993269 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59932692018-06-20 Drought Persistence Errors in Global Climate Models Moon, H. Gudmundsson, L. Seneviratne, S. I. J Geophys Res Atmos Research Articles The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state‐of‐the‐art GCM model simulations to observation‐based data sets. For doing so, we consider dry‐to‐dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement. John Wiley and Sons Inc. 2018-04-12 2018-04-16 /pmc/articles/PMC5993269/ /pubmed/29938145 http://dx.doi.org/10.1002/2017JD027577 Text en ©2018. The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Moon, H. Gudmundsson, L. Seneviratne, S. I. Drought Persistence Errors in Global Climate Models |
title | Drought Persistence Errors in Global Climate Models |
title_full | Drought Persistence Errors in Global Climate Models |
title_fullStr | Drought Persistence Errors in Global Climate Models |
title_full_unstemmed | Drought Persistence Errors in Global Climate Models |
title_short | Drought Persistence Errors in Global Climate Models |
title_sort | drought persistence errors in global climate models |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993269/ https://www.ncbi.nlm.nih.gov/pubmed/29938145 http://dx.doi.org/10.1002/2017JD027577 |
work_keys_str_mv | AT moonh droughtpersistenceerrorsinglobalclimatemodels AT gudmundssonl droughtpersistenceerrorsinglobalclimatemodels AT seneviratnesi droughtpersistenceerrorsinglobalclimatemodels |