Cargando…

Synthesis, Radiolabelling and In Vitro Imaging of Multifunctional Nanoceramics

Molecular imaging has become a powerful technique in preclinical and clinical research aiming towards the diagnosis of many diseases. In this work, we address the synthetic challenges in achieving lab‐scale, batch‐to‐batch reproducible copper‐64‐ and gallium‐68‐radiolabelled metal nanoparticles (MNP...

Descripción completa

Detalles Bibliográficos
Autores principales: Lledos, Marina, Mirabello, Vincenzo, Sarpaki, Sophia, Ge, Haobo, Smugowski, Hubert J., Carroll, Laurence, Aboagye, Eric O., Aigbirhio, Franklin I., Botchway, Stanley W., Dilworth, Jonathan R., Calatayud, David G., Plucinski, Pawel K., Price, Gareth J., Pascu, Sofia I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993288/
https://www.ncbi.nlm.nih.gov/pubmed/29938196
http://dx.doi.org/10.1002/cnma.201700378
_version_ 1783330218261348352
author Lledos, Marina
Mirabello, Vincenzo
Sarpaki, Sophia
Ge, Haobo
Smugowski, Hubert J.
Carroll, Laurence
Aboagye, Eric O.
Aigbirhio, Franklin I.
Botchway, Stanley W.
Dilworth, Jonathan R.
Calatayud, David G.
Plucinski, Pawel K.
Price, Gareth J.
Pascu, Sofia I.
author_facet Lledos, Marina
Mirabello, Vincenzo
Sarpaki, Sophia
Ge, Haobo
Smugowski, Hubert J.
Carroll, Laurence
Aboagye, Eric O.
Aigbirhio, Franklin I.
Botchway, Stanley W.
Dilworth, Jonathan R.
Calatayud, David G.
Plucinski, Pawel K.
Price, Gareth J.
Pascu, Sofia I.
author_sort Lledos, Marina
collection PubMed
description Molecular imaging has become a powerful technique in preclinical and clinical research aiming towards the diagnosis of many diseases. In this work, we address the synthetic challenges in achieving lab‐scale, batch‐to‐batch reproducible copper‐64‐ and gallium‐68‐radiolabelled metal nanoparticles (MNPs) for cellular imaging purposes. Composite NPs incorporating magnetic iron oxide cores with luminescent quantum dots were simultaneously encapsulated within a thin silica shell, yielding water‐dispersible, biocompatible and luminescent NPs. Scalable surface modification protocols to attach the radioisotopes (64)Cu (t(1/2)=12.7 h) and (68)Ga (t(1/2)=68 min) in high yields are reported, and are compatible with the time frame of radiolabelling. Confocal and fluorescence lifetime imaging studies confirm the uptake of the encapsulated imaging agents and their cytoplasmic localisation in prostate cancer (PC‐3) cells. Cellular viability assays show that the biocompatibility of the system is improved when the fluorophores are encapsulated within a silica shell. The functional and biocompatible SiO(2) matrix represents an ideal platform for the incorporation of (64)Cu and (68)Ga radioisotopes with high radiolabelling incorporation.
format Online
Article
Text
id pubmed-5993288
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-59932882018-06-20 Synthesis, Radiolabelling and In Vitro Imaging of Multifunctional Nanoceramics Lledos, Marina Mirabello, Vincenzo Sarpaki, Sophia Ge, Haobo Smugowski, Hubert J. Carroll, Laurence Aboagye, Eric O. Aigbirhio, Franklin I. Botchway, Stanley W. Dilworth, Jonathan R. Calatayud, David G. Plucinski, Pawel K. Price, Gareth J. Pascu, Sofia I. ChemNanoMat Full Papers Molecular imaging has become a powerful technique in preclinical and clinical research aiming towards the diagnosis of many diseases. In this work, we address the synthetic challenges in achieving lab‐scale, batch‐to‐batch reproducible copper‐64‐ and gallium‐68‐radiolabelled metal nanoparticles (MNPs) for cellular imaging purposes. Composite NPs incorporating magnetic iron oxide cores with luminescent quantum dots were simultaneously encapsulated within a thin silica shell, yielding water‐dispersible, biocompatible and luminescent NPs. Scalable surface modification protocols to attach the radioisotopes (64)Cu (t(1/2)=12.7 h) and (68)Ga (t(1/2)=68 min) in high yields are reported, and are compatible with the time frame of radiolabelling. Confocal and fluorescence lifetime imaging studies confirm the uptake of the encapsulated imaging agents and their cytoplasmic localisation in prostate cancer (PC‐3) cells. Cellular viability assays show that the biocompatibility of the system is improved when the fluorophores are encapsulated within a silica shell. The functional and biocompatible SiO(2) matrix represents an ideal platform for the incorporation of (64)Cu and (68)Ga radioisotopes with high radiolabelling incorporation. John Wiley and Sons Inc. 2018-02-08 2018-04 /pmc/articles/PMC5993288/ /pubmed/29938196 http://dx.doi.org/10.1002/cnma.201700378 Text en © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Lledos, Marina
Mirabello, Vincenzo
Sarpaki, Sophia
Ge, Haobo
Smugowski, Hubert J.
Carroll, Laurence
Aboagye, Eric O.
Aigbirhio, Franklin I.
Botchway, Stanley W.
Dilworth, Jonathan R.
Calatayud, David G.
Plucinski, Pawel K.
Price, Gareth J.
Pascu, Sofia I.
Synthesis, Radiolabelling and In Vitro Imaging of Multifunctional Nanoceramics
title Synthesis, Radiolabelling and In Vitro Imaging of Multifunctional Nanoceramics
title_full Synthesis, Radiolabelling and In Vitro Imaging of Multifunctional Nanoceramics
title_fullStr Synthesis, Radiolabelling and In Vitro Imaging of Multifunctional Nanoceramics
title_full_unstemmed Synthesis, Radiolabelling and In Vitro Imaging of Multifunctional Nanoceramics
title_short Synthesis, Radiolabelling and In Vitro Imaging of Multifunctional Nanoceramics
title_sort synthesis, radiolabelling and in vitro imaging of multifunctional nanoceramics
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993288/
https://www.ncbi.nlm.nih.gov/pubmed/29938196
http://dx.doi.org/10.1002/cnma.201700378
work_keys_str_mv AT lledosmarina synthesisradiolabellingandinvitroimagingofmultifunctionalnanoceramics
AT mirabellovincenzo synthesisradiolabellingandinvitroimagingofmultifunctionalnanoceramics
AT sarpakisophia synthesisradiolabellingandinvitroimagingofmultifunctionalnanoceramics
AT gehaobo synthesisradiolabellingandinvitroimagingofmultifunctionalnanoceramics
AT smugowskihubertj synthesisradiolabellingandinvitroimagingofmultifunctionalnanoceramics
AT carrolllaurence synthesisradiolabellingandinvitroimagingofmultifunctionalnanoceramics
AT aboagyeerico synthesisradiolabellingandinvitroimagingofmultifunctionalnanoceramics
AT aigbirhiofranklini synthesisradiolabellingandinvitroimagingofmultifunctionalnanoceramics
AT botchwaystanleyw synthesisradiolabellingandinvitroimagingofmultifunctionalnanoceramics
AT dilworthjonathanr synthesisradiolabellingandinvitroimagingofmultifunctionalnanoceramics
AT calatayuddavidg synthesisradiolabellingandinvitroimagingofmultifunctionalnanoceramics
AT plucinskipawelk synthesisradiolabellingandinvitroimagingofmultifunctionalnanoceramics
AT pricegarethj synthesisradiolabellingandinvitroimagingofmultifunctionalnanoceramics
AT pascusofiai synthesisradiolabellingandinvitroimagingofmultifunctionalnanoceramics