Cargando…
Prediction of the potential global distribution for Biomphalaria straminea, an intermediate host for Schistosoma mansoni
BACKGROUND: Schistosomiasis is a snail-borne parasitic disease and is endemic in many tropical and subtropical countries. Biomphalaria straminea, an intermediate host for Schistosoma mansoni, is native to the southeastern part of South America and has established in other regions of South America, C...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993297/ https://www.ncbi.nlm.nih.gov/pubmed/29813073 http://dx.doi.org/10.1371/journal.pntd.0006548 |
_version_ | 1783330220538855424 |
---|---|
author | Yang, Ya Cheng, Wanting Wu, Xiaoying Huang, Shaoyu Deng, Zhuohui Zeng, Xin Yuan, Dongjuan Yang, Yu Wu, Zhongdao Chen, Yue Zhou, Yibiao Jiang, Qingwu |
author_facet | Yang, Ya Cheng, Wanting Wu, Xiaoying Huang, Shaoyu Deng, Zhuohui Zeng, Xin Yuan, Dongjuan Yang, Yu Wu, Zhongdao Chen, Yue Zhou, Yibiao Jiang, Qingwu |
author_sort | Yang, Ya |
collection | PubMed |
description | BACKGROUND: Schistosomiasis is a snail-borne parasitic disease and is endemic in many tropical and subtropical countries. Biomphalaria straminea, an intermediate host for Schistosoma mansoni, is native to the southeastern part of South America and has established in other regions of South America, Central America and southern China during the last decades. S. mansoni is endemic in Africa, the Middle East, South America and the Caribbean. Knowledge of the potential global distribution of this snail is essential for risk assessment, monitoring, disease prevention and control. METHODS AND FINDINGS: A comprehensive database of cross-continental occurrence for B. straminea was compiled to construct ecological models. We used several approaches to investigate the distribution of B. straminea, including direct comparison of climatic conditions, principal component analysis and niche overlap analyses to detect niche shifts. We also investigated the impacts of bioclimatic and human factors, and then used the bioclimatic and footprint layers to predict the potential distribution of B. straminea at global scale. We detected niche shifts accompanying the invasions of B. straminea in the Americas and China. The introduced populations had enlarged its habitats to subtropical regions where annual mean temperature is relatively low. Annual mean temperature, isothermality and temperature seasonality were identified as most important climatic features for the occurrence of B. straminea. Additionally, human factors improved the model prediction (P<0.001). Our model showed that under current climate conditions the snail should mostly be confined to the tropic and subtropic regions, including South America, Central America, Sub-Saharan Africa and Southeast Asia. CONCLUSIONS: Our results confirmed that niche shifts took place in the invasions of B. straminea, in which bioclimatic and human factors played an important role. Our model predicted the global distribution of B. straminea based on habitat suitability, which would help for prioritizing monitoring and management efforts for B. straminea control in the context of ongoing climate change and human disturbances. |
format | Online Article Text |
id | pubmed-5993297 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-59932972018-06-17 Prediction of the potential global distribution for Biomphalaria straminea, an intermediate host for Schistosoma mansoni Yang, Ya Cheng, Wanting Wu, Xiaoying Huang, Shaoyu Deng, Zhuohui Zeng, Xin Yuan, Dongjuan Yang, Yu Wu, Zhongdao Chen, Yue Zhou, Yibiao Jiang, Qingwu PLoS Negl Trop Dis Research Article BACKGROUND: Schistosomiasis is a snail-borne parasitic disease and is endemic in many tropical and subtropical countries. Biomphalaria straminea, an intermediate host for Schistosoma mansoni, is native to the southeastern part of South America and has established in other regions of South America, Central America and southern China during the last decades. S. mansoni is endemic in Africa, the Middle East, South America and the Caribbean. Knowledge of the potential global distribution of this snail is essential for risk assessment, monitoring, disease prevention and control. METHODS AND FINDINGS: A comprehensive database of cross-continental occurrence for B. straminea was compiled to construct ecological models. We used several approaches to investigate the distribution of B. straminea, including direct comparison of climatic conditions, principal component analysis and niche overlap analyses to detect niche shifts. We also investigated the impacts of bioclimatic and human factors, and then used the bioclimatic and footprint layers to predict the potential distribution of B. straminea at global scale. We detected niche shifts accompanying the invasions of B. straminea in the Americas and China. The introduced populations had enlarged its habitats to subtropical regions where annual mean temperature is relatively low. Annual mean temperature, isothermality and temperature seasonality were identified as most important climatic features for the occurrence of B. straminea. Additionally, human factors improved the model prediction (P<0.001). Our model showed that under current climate conditions the snail should mostly be confined to the tropic and subtropic regions, including South America, Central America, Sub-Saharan Africa and Southeast Asia. CONCLUSIONS: Our results confirmed that niche shifts took place in the invasions of B. straminea, in which bioclimatic and human factors played an important role. Our model predicted the global distribution of B. straminea based on habitat suitability, which would help for prioritizing monitoring and management efforts for B. straminea control in the context of ongoing climate change and human disturbances. Public Library of Science 2018-05-29 /pmc/articles/PMC5993297/ /pubmed/29813073 http://dx.doi.org/10.1371/journal.pntd.0006548 Text en © 2018 Yang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Yang, Ya Cheng, Wanting Wu, Xiaoying Huang, Shaoyu Deng, Zhuohui Zeng, Xin Yuan, Dongjuan Yang, Yu Wu, Zhongdao Chen, Yue Zhou, Yibiao Jiang, Qingwu Prediction of the potential global distribution for Biomphalaria straminea, an intermediate host for Schistosoma mansoni |
title | Prediction of the potential global distribution for Biomphalaria straminea, an intermediate host for Schistosoma mansoni |
title_full | Prediction of the potential global distribution for Biomphalaria straminea, an intermediate host for Schistosoma mansoni |
title_fullStr | Prediction of the potential global distribution for Biomphalaria straminea, an intermediate host for Schistosoma mansoni |
title_full_unstemmed | Prediction of the potential global distribution for Biomphalaria straminea, an intermediate host for Schistosoma mansoni |
title_short | Prediction of the potential global distribution for Biomphalaria straminea, an intermediate host for Schistosoma mansoni |
title_sort | prediction of the potential global distribution for biomphalaria straminea, an intermediate host for schistosoma mansoni |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993297/ https://www.ncbi.nlm.nih.gov/pubmed/29813073 http://dx.doi.org/10.1371/journal.pntd.0006548 |
work_keys_str_mv | AT yangya predictionofthepotentialglobaldistributionforbiomphalariastramineaanintermediatehostforschistosomamansoni AT chengwanting predictionofthepotentialglobaldistributionforbiomphalariastramineaanintermediatehostforschistosomamansoni AT wuxiaoying predictionofthepotentialglobaldistributionforbiomphalariastramineaanintermediatehostforschistosomamansoni AT huangshaoyu predictionofthepotentialglobaldistributionforbiomphalariastramineaanintermediatehostforschistosomamansoni AT dengzhuohui predictionofthepotentialglobaldistributionforbiomphalariastramineaanintermediatehostforschistosomamansoni AT zengxin predictionofthepotentialglobaldistributionforbiomphalariastramineaanintermediatehostforschistosomamansoni AT yuandongjuan predictionofthepotentialglobaldistributionforbiomphalariastramineaanintermediatehostforschistosomamansoni AT yangyu predictionofthepotentialglobaldistributionforbiomphalariastramineaanintermediatehostforschistosomamansoni AT wuzhongdao predictionofthepotentialglobaldistributionforbiomphalariastramineaanintermediatehostforschistosomamansoni AT chenyue predictionofthepotentialglobaldistributionforbiomphalariastramineaanintermediatehostforschistosomamansoni AT zhouyibiao predictionofthepotentialglobaldistributionforbiomphalariastramineaanintermediatehostforschistosomamansoni AT jiangqingwu predictionofthepotentialglobaldistributionforbiomphalariastramineaanintermediatehostforschistosomamansoni |