Cargando…
Parameter uncertainty quantification using surrogate models applied to a spatial model of yeast mating polarization
A common challenge in systems biology is quantifying the effects of unknown parameters and estimating parameter values from data. For many systems, this task is computationally intractable due to expensive model evaluations and large numbers of parameters. In this work, we investigate a new method f...
Autores principales: | Renardy, Marissa, Yi, Tau-Mu, Xiu, Dongbin, Chou, Ching-Shan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993324/ https://www.ncbi.nlm.nih.gov/pubmed/29813055 http://dx.doi.org/10.1371/journal.pcbi.1006181 |
Ejemplares similares
-
Modeling Robustness Tradeoffs in Yeast Cell Polarization Induced by Spatial Gradients
por: Chou, Ching-Shan, et al.
Publicado: (2008) -
Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions
por: Chen, Weitao, et al.
Publicado: (2016) -
Robust Spatial Sensing of Mating Pheromone Gradients by Yeast Cells
por: Moore, Travis I., et al.
Publicado: (2008) -
Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling
por: Ye, Dongwei, et al.
Publicado: (2022) -
Yeast Mating and Image-Based Quantification of Spatial Pattern Formation
por: Diener, Christian, et al.
Publicado: (2014)